Fangyu Liu


2022

pdf bib
Proceedings of the Workshop on Multilingual Multimodal Learning
Emanuele Bugliarello | Kai-Wei Cheng | Desmond Elliott | Spandana Gella | Aishwarya Kamath | Liunian Harold Li | Fangyu Liu | Jonas Pfeiffer | Edoardo Maria Ponti | Krishna Srinivasan | Ivan Vulić | Yinfei Yang | Da Yin
Proceedings of the Workshop on Multilingual Multimodal Learning

pdf bib
Improving Word Translation via Two-Stage Contrastive Learning
Yaoyiran Li | Fangyu Liu | Nigel Collier | Anna Korhonen | Ivan Vulić
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Word translation or bilingual lexicon induction (BLI) is a key cross-lingual task, aiming to bridge the lexical gap between different languages. In this work, we propose a robust and effective two-stage contrastive learning framework for the BLI task. At Stage C1, we propose to refine standard cross-lingual linear maps between static word embeddings (WEs) via a contrastive learning objective; we also show how to integrate it into the self-learning procedure for even more refined cross-lingual maps. In Stage C2, we conduct BLI-oriented contrastive fine-tuning of mBERT, unlocking its word translation capability. We also show that static WEs induced from the ‘C2-tuned’ mBERT complement static WEs from Stage C1. Comprehensive experiments on standard BLI datasets for diverse languages and different experimental setups demonstrate substantial gains achieved by our framework. While the BLI method from Stage C1 already yields substantial gains over all state-of-the-art BLI methods in our comparison, even stronger improvements are met with the full two-stage framework: e.g., we report gains for 112/112 BLI setups, spanning 28 language pairs.

pdf bib
Rewire-then-Probe: A Contrastive Recipe for Probing Biomedical Knowledge of Pre-trained Language Models
Zaiqiao Meng | Fangyu Liu | Ehsan Shareghi | Yixuan Su | Charlotte Collins | Nigel Collier
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Knowledge probing is crucial for understanding the knowledge transfer mechanism behind the pre-trained language models (PLMs). Despite the growing progress of probing knowledge for PLMs in the general domain, specialised areas such as the biomedical domain are vastly under-explored. To facilitate this, we release a well-curated biomedical knowledge probing benchmark, MedLAMA, constructed based on the Unified Medical Language System (UMLS) Metathesaurus. We test a wide spectrum of state-of-the-art PLMs and probing approaches on our benchmark, reaching at most 3% of acc@10. While highlighting various sources of domain-specific challenges that amount to this underwhelming performance, we illustrate that the underlying PLMs have a higher potential for probing tasks. To achieve this, we propose Contrastive-Probe, a novel self-supervised contrastive probing approach, that adjusts the underlying PLMs without using any probing data. While Contrastive-Probe pushes the acc@10 to 28%, the performance gap still remains notable. Our human expert evaluation suggests that the probing performance of our Contrastive-Probe is still under-estimated as UMLS still does not include the full spectrum of factual knowledge. We hope MedLAMA and Contrastive-Probe facilitate further developments of more suited probing techniques for this domain. Our code and dataset are publicly available at https://github.com/cambridgeltl/medlama.

pdf bib
Prix-LM: Pretraining for Multilingual Knowledge Base Construction
Wenxuan Zhou | Fangyu Liu | Ivan Vulić | Nigel Collier | Muhao Chen
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Knowledge bases (KBs) contain plenty of structured world and commonsense knowledge. As such, they often complement distributional text-based information and facilitate various downstream tasks. Since their manual construction is resource- and time-intensive, recent efforts have tried leveraging large pretrained language models (PLMs) to generate additional monolingual knowledge facts for KBs. However, such methods have not been attempted for building and enriching multilingual KBs. Besides wider application, such multilingual KBs can provide richer combined knowledge than monolingual (e.g., English) KBs. Knowledge expressed in different languages may be complementary and unequally distributed: this implies that the knowledge available in high-resource languages can be transferred to low-resource ones. To achieve this, it is crucial to represent multilingual knowledge in a shared/unified space. To this end, we propose a unified representation model, Prix-LM, for multilingual KB construction and completion. We leverage two types of knowledge, monolingual triples and cross-lingual links, extracted from existing multilingual KBs, and tune a multilingual language encoder XLM-R via a causal language modeling objective. Prix-LM integrates useful multilingual and KB-based factual knowledge into a single model. Experiments on standard entity-related tasks, such as link prediction in multiple languages, cross-lingual entity linking and bilingual lexicon induction, demonstrate its effectiveness, with gains reported over strong task-specialised baselines.

pdf bib
Fine-Grained Controllable Text Generation Using Non-Residual Prompting
Fredrik Carlsson | Joey Öhman | Fangyu Liu | Severine Verlinden | Joakim Nivre | Magnus Sahlgren
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

The introduction of immensely large Causal Language Models (CLMs) has rejuvenated the interest in open-ended text generation. However, controlling the generative process for these Transformer-based models is at large an unsolved problem. Earlier work has explored either plug-and-play decoding strategies, or more powerful but blunt approaches such as prompting. There hence currently exists a trade-off between fine-grained control, and the capability for more expressive high-level instructions. To alleviate this trade-off, we propose an encoder-decoder architecture that enables intermediate text prompts at arbitrary time steps. We propose a resource-efficient method for converting a pre-trained CLM into this architecture, and demonstrate its potential on various experiments, including the novel task of contextualized word inclusion. Our method provides strong results on multiple experimental settings, proving itself to be both expressive and versatile.

pdf bib
TaCL: Improving BERT Pre-training with Token-aware Contrastive Learning
Yixuan Su | Fangyu Liu | Zaiqiao Meng | Tian Lan | Lei Shu | Ehsan Shareghi | Nigel Collier
Findings of the Association for Computational Linguistics: NAACL 2022

Masked language models (MLMs) such as BERT have revolutionized the field of Natural Language Understanding in the past few years. However, existing pre-trained MLMs often output an anisotropic distribution of token representations that occupies a narrow subset of the entire representation space. Such token representations are not ideal, especially for tasks that demand discriminative semantic meanings of distinct tokens. In this work, we propose TaCL (Token-aware Contrastive Learning), a novel continual pre-training approach that encourages BERT to learn an isotropic and discriminative distribution of token representations. TaCL is fully unsupervised and requires no additional data. We extensively test our approach on a wide range of English and Chinese benchmarks. The results show that TaCL brings consistent and notable improvements over the original BERT model. Furthermore, we conduct detailed analysis to reveal the merits and inner-workings of our approach.

2021

pdf bib
Self-Alignment Pretraining for Biomedical Entity Representations
Fangyu Liu | Ehsan Shareghi | Zaiqiao Meng | Marco Basaldella | Nigel Collier
Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

Despite the widespread success of self-supervised learning via masked language models (MLM), accurately capturing fine-grained semantic relationships in the biomedical domain remains a challenge. This is of paramount importance for entity-level tasks such as entity linking where the ability to model entity relations (especially synonymy) is pivotal. To address this challenge, we propose SapBERT, a pretraining scheme that self-aligns the representation space of biomedical entities. We design a scalable metric learning framework that can leverage UMLS, a massive collection of biomedical ontologies with 4M+ concepts. In contrast with previous pipeline-based hybrid systems, SapBERT offers an elegant one-model-for-all solution to the problem of medical entity linking (MEL), achieving a new state-of-the-art (SOTA) on six MEL benchmarking datasets. In the scientific domain, we achieve SOTA even without task-specific supervision. With substantial improvement over various domain-specific pretrained MLMs such as BioBERT, SciBERTand and PubMedBERT, our pretraining scheme proves to be both effective and robust.

pdf bib
Contrastive Out-of-Distribution Detection for Pretrained Transformers
Wenxuan Zhou | Fangyu Liu | Muhao Chen
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

Pretrained Transformers achieve remarkable performance when training and test data are from the same distribution. However, in real-world scenarios, the model often faces out-of-distribution (OOD) instances that can cause severe semantic shift problems at inference time. Therefore, in practice, a reliable model should identify such instances, and then either reject them during inference or pass them over to models that handle another distribution. In this paper, we develop an unsupervised OOD detection method, in which only the in-distribution (ID) data are used in training. We propose to fine-tune the Transformers with a contrastive loss, which improves the compactness of representations, such that OOD instances can be better differentiated from ID ones. These OOD instances can then be accurately detected using the Mahalanobis distance in the model’s penultimate layer. We experiment with comprehensive settings and achieve near-perfect OOD detection performance, outperforming baselines drastically. We further investigate the rationales behind the improvement, finding that more compact representations through margin-based contrastive learning bring the improvement. We release our code to the community for future research.

pdf bib
Fast, Effective, and Self-Supervised: Transforming Masked Language Models into Universal Lexical and Sentence Encoders
Fangyu Liu | Ivan Vulić | Anna Korhonen | Nigel Collier
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

Previous work has indicated that pretrained Masked Language Models (MLMs) are not effective as universal lexical and sentence encoders off-the-shelf, i.e., without further task-specific fine-tuning on NLI, sentence similarity, or paraphrasing tasks using annotated task data. In this work, we demonstrate that it is possible to turn MLMs into effective lexical and sentence encoders even without any additional data, relying simply on self-supervision. We propose an extremely simple, fast, and effective contrastive learning technique, termed Mirror-BERT, which converts MLMs (e.g., BERT and RoBERTa) into such encoders in 20-30 seconds with no access to additional external knowledge. Mirror-BERT relies on identical and slightly modified string pairs as positive (i.e., synonymous) fine-tuning examples, and aims to maximise their similarity during “identity fine-tuning”. We report huge gains over off-the-shelf MLMs with Mirror-BERT both in lexical-level and in sentence-level tasks, across different domains and different languages. Notably, in sentence similarity (STS) and question-answer entailment (QNLI) tasks, our self-supervised Mirror-BERT model even matches the performance of the Sentence-BERT models from prior work which rely on annotated task data. Finally, we delve deeper into the inner workings of MLMs, and suggest some evidence on why this simple Mirror-BERT fine-tuning approach can yield effective universal lexical and sentence encoders.

pdf bib
Mixture-of-Partitions: Infusing Large Biomedical Knowledge Graphs into BERT
Zaiqiao Meng | Fangyu Liu | Thomas Clark | Ehsan Shareghi | Nigel Collier
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

Infusing factual knowledge into pre-trained models is fundamental for many knowledge-intensive tasks. In this paper, we proposed Mixture-of-Partitions (MoP), an infusion approach that can handle a very large knowledge graph (KG) by partitioning it into smaller sub-graphs and infusing their specific knowledge into various BERT models using lightweight adapters. To leverage the overall factual knowledge for a target task, these sub-graph adapters are further fine-tuned along with the underlying BERT through a mixture layer. We evaluate our MoP with three biomedical BERTs (SciBERT, BioBERT, PubmedBERT) on six downstream tasks (inc. NLI, QA, Classification), and the results show that our MoP consistently enhances the underlying BERTs in task performance, and achieves new SOTA performances on five evaluated datasets.

pdf bib
Visually Grounded Reasoning across Languages and Cultures
Fangyu Liu | Emanuele Bugliarello | Edoardo Maria Ponti | Siva Reddy | Nigel Collier | Desmond Elliott
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

The design of widespread vision-and-language datasets and pre-trained encoders directly adopts, or draws inspiration from, the concepts and images of ImageNet. While one can hardly overestimate how much this benchmark contributed to progress in computer vision, it is mostly derived from lexical databases and image queries in English, resulting in source material with a North American or Western European bias. Therefore, we devise a new protocol to construct an ImageNet-style hierarchy representative of more languages and cultures. In particular, we let the selection of both concepts and images be entirely driven by native speakers, rather than scraping them automatically. Specifically, we focus on a typologically diverse set of languages, namely, Indonesian, Mandarin Chinese, Swahili, Tamil, and Turkish. On top of the concepts and images obtained through this new protocol, we create a multilingual dataset for Multicultural Reasoning over Vision and Language (MaRVL) by eliciting statements from native speaker annotators about pairs of images. The task consists of discriminating whether each grounded statement is true or false. We establish a series of baselines using state-of-the-art models and find that their cross-lingual transfer performance lags dramatically behind supervised performance in English. These results invite us to reassess the robustness and accuracy of current state-of-the-art models beyond a narrow domain, but also open up new exciting challenges for the development of truly multilingual and multicultural systems.

pdf bib
MirrorWiC: On Eliciting Word-in-Context Representations from Pretrained Language Models
Qianchu Liu | Fangyu Liu | Nigel Collier | Anna Korhonen | Ivan Vulić
Proceedings of the 25th Conference on Computational Natural Language Learning

Recent work indicated that pretrained language models (PLMs) such as BERT and RoBERTa can be transformed into effective sentence and word encoders even via simple self-supervised techniques. Inspired by this line of work, in this paper we propose a fully unsupervised approach to improving word-in-context (WiC) representations in PLMs, achieved via a simple and efficient WiC-targeted fine-tuning procedure: MirrorWiC. The proposed method leverages only raw texts sampled from Wikipedia, assuming no sense-annotated data, and learns context-aware word representations within a standard contrastive learning setup. We experiment with a series of standard and comprehensive WiC benchmarks across multiple languages. Our proposed fully unsupervised MirrorWiC models obtain substantial gains over off-the-shelf PLMs across all monolingual, multilingual and cross-lingual setups. Moreover, on some standard WiC benchmarks, MirrorWiC is even on-par with supervised models fine-tuned with in-task data and sense labels.

pdf bib
Integrating Transformers and Knowledge Graphs for Twitter Stance Detection
Thomas Clark | Costanza Conforti | Fangyu Liu | Zaiqiao Meng | Ehsan Shareghi | Nigel Collier
Proceedings of the Seventh Workshop on Noisy User-generated Text (W-NUT 2021)

Stance detection (SD) entails classifying the sentiment of a text towards a given target, and is a relevant sub-task for opinion mining and social media analysis. Recent works have explored knowledge infusion supplementing the linguistic competence and latent knowledge of large pre-trained language models with structured knowledge graphs (KGs), yet few works have applied such methods to the SD task. In this work, we first perform stance-relevant knowledge probing on Transformers-based pre-trained models in a zero-shot setting, showing these models’ latent real-world knowledge about SD targets and their sensitivity to context. We then train and evaluate new knowledge-enriched stance detection models on two Twitter stance datasets, achieving state-of-the-art performance on both.

pdf bib
Learning Domain-Specialised Representations for Cross-Lingual Biomedical Entity Linking
Fangyu Liu | Ivan Vulić | Anna Korhonen | Nigel Collier
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 2: Short Papers)

Injecting external domain-specific knowledge (e.g., UMLS) into pretrained language models (LMs) advances their capability to handle specialised in-domain tasks such as biomedical entity linking (BEL). However, such abundant expert knowledge is available only for a handful of languages (e.g., English). In this work, by proposing a novel cross-lingual biomedical entity linking task (XL-BEL) and establishing a new XL-BEL benchmark spanning 10 typologically diverse languages, we first investigate the ability of standard knowledge-agnostic as well as knowledge-enhanced monolingual and multilingual LMs beyond the standard monolingual English BEL task. The scores indicate large gaps to English performance. We then address the challenge of transferring domain-specific knowledge in resource-rich languages to resource-poor ones. To this end, we propose and evaluate a series of cross-lingual transfer methods for the XL-BEL task, and demonstrate that general-domain bitext helps propagate the available English knowledge to languages with little to no in-domain data. Remarkably, we show that our proposed domain-specific transfer methods yield consistent gains across all target languages, sometimes up to 20 Precision@1 points, without any in-domain knowledge in the target language, and without any in-domain parallel data.

2020

pdf bib
COMETA: A Corpus for Medical Entity Linking in the Social Media
Marco Basaldella | Fangyu Liu | Ehsan Shareghi | Nigel Collier
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

Whilst there has been growing progress in Entity Linking (EL) for general language, existing datasets fail to address the complex nature of health terminology in layman’s language. Meanwhile, there is a growing need for applications that can understand the public’s voice in the health domain. To address this we introduce a new corpus called COMETA, consisting of 20k English biomedical entity mentions from Reddit expert-annotated with links to SNOMED CT, a widely-used medical knowledge graph. Our corpus satisfies a combination of desirable properties, from scale and coverage to diversity and quality, that to the best of our knowledge has not been met by any of the existing resources in the field. Through benchmark experiments on 20 EL baselines from string- to neural-based models we shed light on the ability of these systems to perform complex inference on entities and concepts under 2 challenging evaluation scenarios. Our experimental results on COMETA illustrate that no golden bullet exists and even the best mainstream techniques still have a significant performance gap to fill, while the best solution relies on combining different views of data.

2019

pdf bib
A Strong and Robust Baseline for Text-Image Matching
Fangyu Liu | Rongtian Ye
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics: Student Research Workshop

We review the current schemes of text-image matching models and propose improvements for both training and inference. First, we empirically show limitations of two popular loss (sum and max-margin loss) widely used in training text-image embeddings and propose a trade-off: a kNN-margin loss which 1) utilizes information from hard negatives and 2) is robust to noise as all K-most hardest samples are taken into account, tolerating pseudo negatives and outliers. Second, we advocate the use of Inverted Softmax (IS) and Cross-modal Local Scaling (CSLS) during inference to mitigate the so-called hubness problem in high-dimensional embedding space, enhancing scores of all metrics by a large margin.