Fangzhou Zhai


2022

pdf bib
Zero-shot Script Parsing
Fangzhou Zhai | Vera Demberg | Alexander Koller
Proceedings of the 29th International Conference on Computational Linguistics

Script knowledge is useful to a variety of NLP tasks. However, existing resources only cover a small number of activities, limiting its practical usefulness. In this work, we propose a zero-shot learning approach to script parsing, the task of tagging texts with scenario-specific event and participant types, which enables us to acquire script knowledge without domain-specific annotations. We (1) learn representations of potential event and participant mentions by promoting cluster consistency according to the annotated data; (2) perform clustering on the event / participant candidates from unannotated texts that belongs to an unseen scenario. The model achieves 68.1/74.4 average F1 for event / participant parsing, respectively, outperforming a previous CRF model that, in contrast, has access to scenario-specific supervision. We also evaluate the model by testing on a different corpus, where it achieved 55.5/54.0 average F1 for event / participant parsing.

pdf bib
Is BERT Robust to Label Noise? A Study on Learning with Noisy Labels in Text Classification
Dawei Zhu | Michael A. Hedderich | Fangzhou Zhai | David Adelani | Dietrich Klakow
Proceedings of the Third Workshop on Insights from Negative Results in NLP

Incorrect labels in training data occur when human annotators make mistakes or when the data is generated via weak or distant supervision. It has been shown that complex noise-handling techniques - by modeling, cleaning or filtering the noisy instances - are required to prevent models from fitting this label noise. However, we show in this work that, for text classification tasks with modern NLP models like BERT, over a variety of noise types, existing noise-handling methods do not always improve its performance, and may even deteriorate it, suggesting the need for further investigation. We also back our observations with a comprehensive analysis.

2021

pdf bib
Aligning Actions Across Recipe Graphs
Lucia Donatelli | Theresa Schmidt | Debanjali Biswas | Arne Köhn | Fangzhou Zhai | Alexander Koller
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

Recipe texts are an idiosyncratic form of instructional language that pose unique challenges for automatic understanding. One challenge is that a cooking step in one recipe can be explained in another recipe in different words, at a different level of abstraction, or not at all. Previous work has annotated correspondences between recipe instructions at the sentence level, often glossing over important correspondences between cooking steps across recipes. We present a novel and fully-parsed English recipe corpus, ARA (Aligned Recipe Actions), which annotates correspondences between individual actions across similar recipes with the goal of capturing information implicit for accurate recipe understanding. We represent this information in the form of recipe graphs, and we train a neural model for predicting correspondences on ARA. We find that substantial gains in accuracy can be obtained by taking fine-grained structural information about the recipes into account.

pdf bib
Script Parsing with Hierarchical Sequence Modelling
Fangzhou Zhai | Iza Škrjanec | Alexander Koller
Proceedings of *SEM 2021: The Tenth Joint Conference on Lexical and Computational Semantics

Scripts capture commonsense knowledge about everyday activities and their participants. Script knowledge proved useful in a number of NLP tasks, such as referent prediction, discourse classification, and story generation. A crucial step for the exploitation of script knowledge is script parsing, the task of tagging a text with the events and participants from a certain activity. This task is challenging: it requires information both about the ways events and participants are usually uttered in surface language as well as the order in which they occur in the world. We show how to do accurate script parsing with a hierarchical sequence model and transfer learning. Our model improves the state of the art of event parsing by over 16 points F-score and, for the first time, accurately tags script participants.

2020

pdf bib
Story Generation with Rich Details
Fangzhou Zhai | Vera Demberg | Alexander Koller
Proceedings of the 28th International Conference on Computational Linguistics

Automatically generated stories need to be not only coherent, but also interesting. Apart from realizing a story line, the text also needs to include rich details to engage the readers. We propose a model that features two different generation components: an outliner, which proceeds the main story line to realize global coherence; a detailer, which supplies relevant details to the story in a locally coherent manner. Human evaluations show our model substantially improves the informativeness of generated text while retaining its coherence, outperforming various baselines.

2019

pdf bib
A Hybrid Model for Globally Coherent Story Generation
Fangzhou Zhai | Vera Demberg | Pavel Shkadzko | Wei Shi | Asad Sayeed
Proceedings of the Second Workshop on Storytelling

Automatically generating globally coherent stories is a challenging problem. Neural text generation models have been shown to perform well at generating fluent sentences from data, but they usually fail to keep track of the overall coherence of the story after a couple of sentences. Existing work that incorporates a text planning module succeeded in generating recipes and dialogues, but appears quite data-demanding. We propose a novel story generation approach that generates globally coherent stories from a fairly small corpus. The model exploits a symbolic text planning module to produce text plans, thus reducing the demand of data; a neural surface realization module then generates fluent text conditioned on the text plan. Human evaluation showed that our model outperforms various baselines by a wide margin and generates stories which are fluent as well as globally coherent.