Fanny Grandry


pdf bib
Hybrid Citation Extraction from Patents
Olivier Galibert | Sophie Rosset | Xavier Tannier | Fanny Grandry
Proceedings of the Seventh International Conference on Language Resources and Evaluation (LREC'10)

The Quaero project organized a set of evaluations of Named Entity recognition systems in 2009. One of the sub-tasks consists in extracting citations from patents, i.e. references to other documents, either other patents or general literature from English-language patents. We present in this paper the participation of LIMSI in this evaluation, with a complete system description and the evaluation results. The corpus shown that patent and non-patent citations have a very different nature. We then separated references to other patents and to general literature papers and we created a hybrid system. For patent citations, the system used rule-based expert knowledge on the form of regular expressions. The system for detecting non-patent citations, on the other hand, is purely stochastic (machine learning with CRF++). Then we mixed both approaches to provide a single output. 4 teams participated to this task and our system obtained the best results of this evaluation campaign, even if the difference between the first two systems is poorly significant.