Federico Fancellu


pdf bib
Visual Semantic Parsing: From Images to Abstract Meaning Representation
Mohamed Ashraf Abdelsalam | Zhan Shi | Federico Fancellu | Kalliopi Basioti | Dhaivat Bhatt | Vladimir Pavlovic | Afsaneh Fazly
Proceedings of the 26th Conference on Computational Natural Language Learning (CoNLL)

The success of scene graphs for visual scene understanding has brought attention to the benefits of abstracting a visual input (e.g., image) into a structured representation, where entities (people and objects) are nodes connected by edges specifying their relations. Building these representations, however, requires expensive manual annotation in the form of images paired with their scene graphs or frames. These formalisms remain limited in the nature of entities and relations they can capture. In this paper, we propose to leverage a widely-used meaning representation in the field of natural language processing, the Abstract Meaning Representation (AMR), to address these shortcomings. Compared to scene graphs, which largely emphasize spatial relationships, our visual AMR graphs are more linguistically informed, with a focus on higher-level semantic concepts extrapolated from visual input. Moreover, they allow us to generate meta-AMR graphs to unify information contained in multiple image descriptions under one representation. Through extensive experimentation and analysis, we demonstrate that we can re-purpose an existing text-to-AMR parser to parse images into AMRs. Our findings point to important future research directions for improved scene understanding.

pdf bib
Revisiting text decomposition methods for NLI-based factuality scoring of summaries
John Glover | Federico Fancellu | Vasudevan Jagannathan | Matthew R. Gormley | Thomas Schaaf
Proceedings of the 2nd Workshop on Natural Language Generation, Evaluation, and Metrics (GEM)

Scoring the factuality of a generated summary involves measuring the degree to which a target text contains factual information using the input document as support. Given the similarities in the problem formulation, previous work has shown that Natural Language Inference models can be effectively repurposed to perform this task. As these models are trained to score entailment at a sentence level, several recent studies have shown that decomposing either the input document or the summary into sentences helps with factuality scoring. But is fine-grained decomposition always a winning strategy? In this paper we systematically compare different granularities of decomposition - from document to sub-sentence level, and we show that the answer is no. Our results show that incorporating additional context can yield improvement, but that this does not necessarily apply to all datasets. We also show that small changes to previously proposed entailment-based scoring methods can result in better performance, highlighting the need for caution in model and methodology selection for downstream tasks.


pdf bib
Dependency parsing with structure preserving embeddings
Ákos Kádár | Lan Xiao | Mete Kemertas | Federico Fancellu | Allan Jepson | Afsaneh Fazly
Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume

Modern neural approaches to dependency parsing are trained to predict a tree structure by jointly learning a contextual representation for tokens in a sentence, as well as a head–dependent scoring function. Whereas this strategy results in high performance, it is difficult to interpret these representations in relation to the geometry of the underlying tree structure. Our work seeks instead to learn interpretable representations by training a parser to explicitly preserve structural properties of a tree. We do so by casting dependency parsing as a tree embedding problem where we incorporate geometric properties of dependency trees in the form of training losses within a graph-based parser. We provide a thorough evaluation of these geometric losses, showing that a majority of them yield strong tree distance preservation as well as parsing performance on par with a competitive graph-based parser (Qi et al., 2018). Finally, we show where parsing errors lie in terms of tree relationship in order to guide future work.

pdf bib
An in-depth look at Euclidean disk embeddings for structure preserving parsing
Federico Fancellu | Lan Xiao | Allan Jepson | Afsaneh Fazly
Proceedings of the Fourth BlackboxNLP Workshop on Analyzing and Interpreting Neural Networks for NLP

Preserving the structural properties of trees or graphs when embedding them into a metric space allows for a high degree of interpretability, and has been shown beneficial for downstream tasks (e.g., hypernym detection, natural language inference, multimodal retrieval). However, whereas the majority of prior work looks at using structure-preserving embeddings when encoding a structure given as input, e.g., WordNet (Fellbaum, 1998), there is little exploration on how to use such embeddings when predicting one. We address this gap for two structure generation tasks, namely dependency and semantic parsing. We test the applicability of disk embeddings (Suzuki et al., 2019) that has been proposed for embedding Directed Acyclic Graphs (DAGs) but has not been tested on tasks that generate such structures. Our experimental results show that for both tasks the original disk embedding formulation leads to much worse performance when compared to non-structure-preserving baselines. We propose enhancements to this formulation and show that they almost close the performance gap for dependency parsing. However, the gap still remains notable for semantic parsing due to the complexity of meaning representation graphs, suggesting a challenge for generating interpretable semantic parse representations.

pdf bib
Frustratingly Simple but Surprisingly Strong: Using Language-Independent Features for Zero-shot Cross-lingual Semantic Parsing
Jingfeng Yang | Federico Fancellu | Bonnie Webber | Diyi Yang
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

The availability of corpora has led to significant advances in training semantic parsers in English. Unfortunately, for languages other than English, annotated data is limited and so is the performance of the developed parsers. Recently, pretrained multilingual models have been proven useful for zero-shot cross-lingual transfer in many NLP tasks. What else does it require to apply a parser trained in English to other languages for zero-shot cross-lingual semantic parsing? Will simple language-independent features help? To this end, we experiment with six Discourse Representation Structure (DRS) semantic parsers in English, and generalize them to Italian, German and Dutch, where there are only a small number of manually annotated parses available. Extensive experiments show that despite its simplicity, adding Universal Dependency (UD) relations and Universal POS tags (UPOS) as model-agnostic features achieves surprisingly strong improvement on all parsers.


pdf bib
Accurate polyglot semantic parsing with DAG grammars
Federico Fancellu | Ákos Kádár | Ran Zhang | Afsaneh Fazly
Findings of the Association for Computational Linguistics: EMNLP 2020

Semantic parses are directed acyclic graphs (DAGs), but in practice most parsers treat them as strings or trees, mainly because models that predict graphs are far less understood. This simplification, however, comes at a cost: there is no guarantee that the output is a well-formed graph. A recent work by Fancellu et al. (2019) addressed this problem by proposing a graph-aware sequence model that utilizes a DAG grammar to guide graph generation. We significantly improve upon this work, by proposing a simpler architecture as well as more efficient training and inference algorithms that can always guarantee the well-formedness of the generated graphs. Importantly, unlike Fancellu et al., our model does not require language-specific features, and hence can harness the inherent ability of DAG-grammar parsing in multilingual settings. We perform monolingual as well as multilingual experiments on the Parallel Meaning Bank (Abzianidze et al., 2017). Our parser outperforms previous graph-aware models by a large margin, and closes the performance gap between string-based and DAG-grammar parsing.

pdf bib
How coherent are neural models of coherence?
Leila Pishdad | Federico Fancellu | Ran Zhang | Afsaneh Fazly
Proceedings of the 28th International Conference on Computational Linguistics

Despite the recent advances in coherence modelling, most such models including state-of-the-art neural ones, are evaluated on either contrived proxy tasks such as the standard order discrimination benchmark, or tasks that require special expert annotation. Moreover, most evaluations are conducted on small newswire corpora. To address these shortcomings, in this paper we propose four generic evaluation tasks that draw on different aspects of coherence at both the lexical and document levels, and can be applied to any corpora. In designing these tasks, we aim at capturing coherence-specific properties, such as the correct use of discourse connectives, lexical cohesion, as well as the overall temporal and causal consistency among events and participants in a story. Importantly, our proposed tasks either rely on automatically-generated data, or data annotated for other purposes, hence alleviating the need for annotation specifically targeted to the task of coherence modelling. We perform experiments with several existing state-of-the-art neural models of coherence on these tasks, across large corpora from different domains, including newswire, dialogue, as well as narrative and instructional text. Our findings point to a strong need for revisiting the common practices in the development and evaluation of coherence models.


pdf bib
Semantic graph parsing with recurrent neural network DAG grammars
Federico Fancellu | Sorcha Gilroy | Adam Lopez | Mirella Lapata
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)

Semantic parses are directed acyclic graphs (DAGs), so semantic parsing should be modeled as graph prediction. But predicting graphs presents difficult technical challenges, so it is simpler and more common to predict the *linearized* graphs found in semantic parsing datasets using well-understood sequence models. The cost of this simplicity is that the predicted strings may not be well-formed graphs. We present recurrent neural network DAG grammars, a graph-aware sequence model that generates only well-formed graphs while sidestepping many difficulties in graph prediction. We test our model on the Parallel Meaning Bank—a multilingual semantic graphbank. Our approach yields competitive results in English and establishes the first results for German, Italian and Dutch.


pdf bib
Evaluating Machine Translation Performance on Chinese Idioms with a Blacklist Method
Yutong Shao | Rico Sennrich | Bonnie Webber | Federico Fancellu
Proceedings of the Eleventh International Conference on Language Resources and Evaluation (LREC 2018)

pdf bib
NegPar: A parallel corpus annotated for negation
Qianchu Liu | Federico Fancellu | Bonnie Webber
Proceedings of the Eleventh International Conference on Language Resources and Evaluation (LREC 2018)


pdf bib
Detecting negation scope is easy, except when it isn’t
Federico Fancellu | Adam Lopez | Bonnie Webber | Hangfeng He
Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics: Volume 2, Short Papers

Several corpora have been annotated with negation scope—the set of words whose meaning is negated by a cue like the word “not”—leading to the development of classifiers that detect negation scope with high accuracy. We show that for nearly all of these corpora, this high accuracy can be attributed to a single fact: they frequently annotate negation scope as a single span of text delimited by punctuation. For negation scopes not of this form, detection accuracy is low and under-sampling the easy training examples does not substantially improve accuracy. We demonstrate that this is partly an artifact of annotation guidelines, and we argue that future negation scope annotation efforts should focus on these more difficult cases.

pdf bib
Universal Dependencies to Logical Form with Negation Scope
Federico Fancellu | Siva Reddy | Adam Lopez | Bonnie Webber
Proceedings of the Workshop Computational Semantics Beyond Events and Roles

Many language technology applications would benefit from the ability to represent negation and its scope on top of widely-used linguistic resources. In this paper, we investigate the possibility of obtaining a first-order logic representation with negation scope marked using Universal Dependencies. To do so, we enhance UDepLambda, a framework that converts dependency graphs to logical forms. The resulting UDepLambda¬ is able to handle phenomena related to scope by means of an higher-order type theory, relevant not only to negation but also to universal quantification and other complex semantic phenomena. The initial conversion we did for English is promising, in that one can represent the scope of negation also in the presence of more complex phenomena such as universal quantifiers.

pdf bib
Neural Networks for Negation Cue Detection in Chinese
Hangfeng He | Federico Fancellu | Bonnie Webber
Proceedings of the Workshop Computational Semantics Beyond Events and Roles

Negation cue detection involves identifying the span inherently expressing negation in a negative sentence. In Chinese, negative cue detection is complicated by morphological proprieties of the language. Previous work has shown that negative cue detection in Chinese can benefit from specific lexical and morphemic features, as well as cross-lingual information. We show here that they are not necessary: A bi-directional LSTM can perform equally well, with minimal feature engineering. In particular, the use of a character-based model allows us to capture characteristics of negation cues in Chinese using word-embedding information only. Not only does our model performs on par with previous work, further error analysis clarifies what problems remain to be addressed.


pdf bib
Neural Networks For Negation Scope Detection
Federico Fancellu | Adam Lopez | Bonnie Webber
Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)


pdf bib
Translating Negation: Induction, Search And Model Errors
Federico Fancellu | Bonnie Webber
Proceedings of the Ninth Workshop on Syntax, Semantics and Structure in Statistical Translation

pdf bib
Translating Negation: A Manual Error Analysis
Federico Fancellu | Bonnie Webber
Proceedings of the Second Workshop on Extra-Propositional Aspects of Meaning in Computational Semantics (ExProM 2015)


pdf bib
Standard language variety conversion for content localisation via SMT
Federico Fancellu | Andy Way | Morgan O’Brien
Proceedings of the 17th Annual Conference of the European Association for Machine Translation

pdf bib
Applying the semantics of negation to SMT through n-best list re-ranking
Federico Fancellu | Bonnie Webber
Proceedings of the 14th Conference of the European Chapter of the Association for Computational Linguistics