While large language models (LLMs) like GPT-4 have recently demonstrated astonishing zero-shot capabilities in general domain tasks, they often generate content with hallucinations in specific domains such as Chinese law, hindering their application in these areas. This is typically due to the absence of training data that encompasses such a specific domain, preventing GPT-4 from acquiring in-domain knowledge. A pressing challenge is that it’s not plausible to continue training LLMs of the GPT-4’s scale on in-domain data.This paper introduces a simple yet effective domain adaptation framework for GPT-4 by reformulating generation as an adapt-retrieve-revise process. The initial step is to adapt an affordable 7B LLM to the Chinese legal domain by continuing learning in-domain data. When solving an in-domain task, we leverage the adapted LLM to generate a draft answer given a task query. Then, the draft answer will be used to retrieve supporting evidence candidates from an external in-domain knowledge base. Finally, the draft answer and retrieved evidence are concatenated into a whole prompt to let GPT-4 assess the evidence and revise the draft answer to generate the final answer. Our proposal combines the advantages of the efficiency of adapting a smaller 7B model with the evidence-assessing capability of GPT-4 and effectively prevents GPT-4 from generating hallucinatory content. In the zero-shot setting of four Chinese legal tasks, our method improves the average score by +33.6 points, compared to GPT-4 direct generation. When compared to two stronger retrieval-based baselines, our method outperforms them by +17.0 and +23.5.
Existing auto-regressive large language models (LLMs) are primarily trained using documents from general domains. In the biomedical domain, continual pre-training is a prevalent method for domain adaptation to inject professional knowledge into powerful LLMs that have been pre-trained in general domains. Previous studies typically conduct standard pre-training by randomly packing multiple documents into a long pre-training sequence. Recently, some existing works suggest that enhancing the relatedness of documents within the same pre-training sequence may be advantageous. However, these studies primarily focus on general domains, which cannot be readily applied in the biomedical domain where the distinction of fine-grained topics is harder. Is it possible to further improve the pre-training for biomedical language models (LMs) using exactly the same corpus? In this paper, we explore an improved approach to continual pre-training, which is a prevalent method for domain adaptation, by utilizing information from the citation network in this challenging scenario. Empirical studies demonstrate that our proposed LinkLM data improves both the intra-sample and inter-sample referring abilities of auto-regressive LMs in the biomedical domain, encouraging more profound consideration of task-specific pre-training sequence design for continual pre-training.
Implicit Discourse Relation Recognition (IDRR), which is the task of recognizing the semantic relation between given text spans that do not contain overt clues, is a long-standing and challenging problem. In particular, the paucity of training data for some error-prone discourse relations makes the problem even more challenging. To address this issue, we propose a method of generating synthetic data for IDRR using a large language model. The proposed method is summarized as two folds: extraction of confusing discourse relation pairs based on false negative rate and synthesis of data focused on the confusion. The key points of our proposed method are utilizing a confusion matrix and adopting two-stage prompting to obtain effective synthetic data. According to the proposed method, we generated synthetic data several times larger than training examples for some error-prone discourse relations and incorporated it into training. As a result of experiments, we achieved state-of-the-art macro-F1 performance thanks to the synthetic data without sacrificing micro-F1 performance and demonstrated its positive effects especially on recognizing some infrequent discourse relations.
The creation of instruction data and evaluation benchmarks for serving Large language models often involves enormous human annotation. This issue becomes particularly pronounced when rapidly developing such resources for a non-English language like Japanese. Instead of following the popular practice of directly translating existing English resources into Japanese (e.g., Japanese-Alpaca), we propose an efficient self-instruct method based on GPT-4. We first translate a small amount of English instructions into Japanese and post-edit them to obtain native-level quality. GPT-4 then utilizes them as demonstrations to automatically generate Japanese instruction data. We also construct an evaluation benchmark containing 80 questions across 8 categories, using GPT-4 to automatically assess the response quality of LLMs without human references. The empirical results suggest that the models fine-tuned on our GPT-4 self-instruct data significantly outperformed the Japanese-Alpaca across all three base pre-trained models. Our GPT-4 self-instruct data allowed the LLaMA 13B model to defeat GPT-3.5 (Davinci-003) with a 54.37% win-rate. The human evaluation exhibits the consistency between GPT-4’s assessments and human preference. Our high-quality instruction data and evaluation benchmark are released here.
We introduce a simple yet effective Prior Knowledge-Guided ADVersarial Training (PKG-ADV) algorithm to improve adversarial training for natural language understanding. Our method simply utilizes task-specific label distribution to guide the training process. By prioritizing the use of prior knowledge of labels, we aim to generate more informative adversarial perturbations. We apply our model to several challenging temporal reasoning tasks. Our method enables a more reliable and controllable data training process than relying on randomized adversarial perturbation. Albeit simple, our method achieved significant improvements in these tasks. To facilitate further research, we will release the code and models.
Large language models (LLMs) have achieved impressive performance on various reasoning tasks. To further improve the performance, we propose MultiTool-CoT, a novel framework that leverages chain-of-thought (CoT) prompting to incorporate multiple external tools, such as a calculator and a knowledge retriever, during the reasoning process. We apply MultiTool-CoT to the Task 2 dataset of NumGLUE, which requires both numerical reasoning and domain-specific knowledge. The experiments show that our method significantly outperforms strong baselines and achieves state-of-the-art performance.
Previous studies have introduced a weakly-supervised paradigm for solving math word problems requiring only the answer value annotation. While these methods search for correct value equation candidates as pseudo labels, they search among a narrow sub-space of the enormous equation space. To address this problem, we propose a novel search algorithm with combinatorial strategy ComSearch, which can compress the search space by excluding mathematically equivalent equations. The compression allows the searching algorithm to enumerate all possible equations and obtain high-quality data. We investigate the noise in the pseudo labels that hold wrong mathematical logic, which we refer to as the false-matching problem, and propose a ranking model to denoise the pseudo labels. Our approach holds a flexible framework to utilize two existing supervised math word problem solvers to train pseudo labels, and both achieve state-of-the-art performance in the weak supervision task.
In spite of the potential for ground-breaking achievements offered by large language models (LLMs) (e.g., GPT-3) via in-context learning (ICL), they still lag significantly behind fully-supervised baselines (e.g., fine-tuned BERT) in relation extraction (RE). This is due to the two major shortcomings of ICL for RE: (1) low relevance regarding entity and relation in existing sentence-level demonstration retrieval approaches for ICL; and (2) the lack of explaining input-label mappings of demonstrations leading to poor ICL effectiveness. In this paper, we propose GPT-RE to successfully address the aforementioned issues by (1) incorporating task-aware representations in demonstration retrieval; and (2) enriching the demonstrations with gold label-induced reasoning logic. We evaluate GPT-RE on four widely-used RE datasets, and observe that GPT-RE achieves improvements over not only existing GPT-3 baselines, but also fully-supervised baselines as in Figure 1. Specifically, GPT-RE achieves SOTA performances on the Semeval and SciERC datasets, and competitive performances on the TACRED and ACE05 datasets. Additionally, a critical issue of LLMs revealed by previous work, the strong inclination to wrongly classify NULL examples into other pre-defined labels, is substantially alleviated by our method. We show an empirical analysis.
Contrastive pre-training on distant supervision has shown remarkable effectiveness in improving supervised relation extraction tasks. However, the existing methods ignore the intrinsic noise of distant supervision during the pre-training stage. In this paper, we propose a weighted contrastive learning method by leveraging the supervised data to estimate the reliability of pre-training instances and explicitly reduce the effect of noise. Experimental results on three supervised datasets demonstrate the advantages of our proposed weighted contrastive learning approach compared to two state-of-the-art non-weighted baselines. Our code and models are available at: https://github.com/YukinoWan/WCL.
To solve Math Word Problems, human students leverage diverse reasoning logic that reaches different possible equation solutions. However, the mainstream sequence-to-sequence approach of automatic solvers aims to decode a fixed solution equation supervised by human annotation. In this paper, we propose a controlled equation generation solver by leveraging a set of control codes to guide the model to consider certain reasoning logic and decode the corresponding equations expressions transformed from the human reference. The empirical results suggest that our method universally improves the performance on single-unknown (Math23K) and multiple-unknown (DRAW1K, HMWP) benchmarks, with substantial improvements up to 13.2% accuracy on the challenging multiple-unknown datasets.
Relation extraction (RE) has achieved remarkable progress with the help of pre-trained language models. However, existing RE models are usually incapable of handling two situations: implicit expressions and long-tail relation types, caused by language complexity and data sparsity. In this paper, we introduce a simple enhancement of RE using k nearest neighbors (kNN-RE). kNN-RE allows the model to consult training relations at test time through a nearest-neighbor search and provides a simple yet effective means to tackle the two issues above. Additionally, we observe that kNN-RE serves as an effective way to leverage distant supervision (DS) data for RE. Experimental results show that the proposed kNN-RE achieves state-of-the-art performances on a variety of supervised RE datasets, i.e., ACE05, SciERC, and Wiki80, along with outperforming the best model to date on the i2b2 and Wiki80 datasets in the setting of allowing using DS. Our code and models are available at: https://github.com/YukinoWan/kNN-RE.
Solving math word problems is the task that analyses the relation of quantities e and requires an accurate understanding of contextual natural language information. Recent studies show that current models rely on shallow heuristics to predict solutions and could be easily misled by small textual perturbations. To address this problem, we propose a Textual Enhanced Contrastive Learning framework, which enforces the models to distinguish semantically similar examples while holding different mathematical logic. We adopt a self-supervised manner strategy to enrich examples with subtle textual variance by textual reordering or problem re-construction. We then retrieve the hardest to differentiate samples from both equation and textual perspectives and guide the model to learn their representations. Experimental results show that our method achieves state-of-the-art on both widely used benchmark datasets and also exquisitely designed challenge datasets in English and Chinese.
In the field of Japanese medical information extraction, few analyzing tools are available and relation extraction is still an under-explored topic. In this paper, we first propose a novel relation annotation schema for investigating the medical and temporal relations between medical entities in Japanese medical reports. We experiment with the practical annotation scenarios by separately annotating two different types of reports. We design a pipeline system with three components for recognizing medical entities, classifying entity modalities, and extracting relations. The empirical results show accurate analyzing performance and suggest the satisfactory annotation quality, the superiority of the latest contextual embedding models. and the feasible annotation strategy for high-accuracy demand.
Understanding event duration is essential for understanding natural language. However, the amount of training data for tasks like duration question answering, i.e., McTACO, is very limited, suggesting a need for external duration information to improve this task. The duration information can be obtained from existing temporal information extraction tasks, such as UDS-T and TimeBank, where more duration data is available. A straightforward two-stage fine-tuning approach might be less likely to succeed given the discrepancy between the target duration question answering task and the intermediary duration classification task. This paper resolves this discrepancy by automatically recasting an existing event duration classification task from UDS-T to a question answering task similar to the target McTACO. We investigate the transferability of duration information by comparing whether the original UDS-T duration classification or the recast UDS-T duration question answering can be transferred to the target task. Our proposed model achieves a 13% Exact Match score improvement over the baseline on the McTACO duration question answering task, showing that the two-stage fine-tuning approach succeeds when the discrepancy between the target and intermediary tasks are resolved.
We propose an ensemble model for predicting the lexical complexity of words and multiword expressions (MWEs). The model receives as input a sentence with a target word or MWE and outputs its complexity score. Given that a key challenge with this task is the limited size of annotated data, our model relies on pretrained contextual representations from different state-of-the-art transformer-based language models (i.e., BERT and RoBERTa), and on a variety of training methods for further enhancing model generalization and robustness: multi-step fine-tuning and multi-task learning, and adversarial training. Additionally, we propose to enrich contextual representations by adding hand-crafted features during training. Our model achieved competitive results and ranked among the top-10 systems in both sub-tasks.
Sequence-to-sequence (S2S) pre-training using large monolingual data is known to improve performance for various S2S NLP tasks. However, large monolingual corpora might not always be available for the languages of interest (LOI). Thus, we propose to exploit monolingual corpora of other languages to complement the scarcity of monolingual corpora for the LOI. We utilize script mapping (Chinese to Japanese) to increase the similarity (number of cognates) between the monolingual corpora of helping languages and LOI. An empirical case study of low-resource Japanese-English neural machine translation (NMT) reveals that leveraging large Chinese and French monolingual corpora can help overcome the shortage of Japanese and English monolingual corpora, respectively, for S2S pre-training. Using only Chinese and French monolingual corpora, we were able to improve Japanese-English translation quality by up to 8.5 BLEU in low-resource scenarios.
Joint entity and relation extraction aims to extract relation triplets from plain text directly. Prior work leverages Sequence-to-Sequence (Seq2Seq) models for triplet sequence generation. However, Seq2Seq enforces an unnecessary order on the unordered triplets and involves a large decoding length associated with error accumulation. These methods introduce exposure bias, which may cause the models overfit to the frequent label combination, thus limiting the generalization ability. We propose a novel Sequence-to-Unordered-Multi-Tree (Seq2UMTree) model to minimize the effects of exposure bias by limiting the decoding length to three within a triplet and removing the order among triplets. We evaluate our model on two datasets, DuIE and NYT, and systematically study how exposure bias alters the performance of Seq2Seq models. Experiments show that the state-of-the-art Seq2Seq model overfits to both datasets while Seq2UMTree shows significantly better generalization. Our code is available at https://github.com/WindChimeRan/OpenJERE.
Temporal relation classification is the pair-wise task for identifying the relation of a temporal link (TLINKs) between two mentions, i.e. event, time and document creation time (DCT). It leads to two crucial limits: 1) Two TLINKs involving a common mention do not share information. 2) Existing models with independent classifiers for each TLINK category (E2E, E2T and E2D) hinder from using the whole data. This paper presents an event centric model that allows to manage dynamic event representations across multiple TLINKs. Our model deals with three TLINK categories with multi-task learning to leverage the full size of data. The experimental results show that our proposal outperforms state-of-the-art models and two strong transfer learning baselines on both the English and Japanese data.
Applying natural language processing (NLP) to medical and clinical texts can bring important social benefits by mining valuable information from unstructured text. A popular application for that purpose is named entity recognition (NER), but the annotation policies of existing clinical corpora have not been standardized across clinical texts of different types. This paper presents an annotation guideline aimed at covering medical documents of various types such as radiography interpretation reports and medical records. Furthermore, the annotation was designed to avoid burdensome requirements related to medical knowledge, thereby enabling corpus development without medical specialists. To achieve these design features, we specifically focus on critical lung diseases to stabilize linguistic patterns in corpora. After annotating around 1100 electronic medical records following the annotation scheme, we demonstrated its feasibility using an NER task. Results suggest that our guideline is applicable to large-scale clinical NLP projects.
The global pandemic of COVID-19 has made the public pay close attention to related news, covering various domains, such as sanitation, treatment, and effects on education. Meanwhile, the COVID-19 condition is very different among the countries (e.g., policies and development of the epidemic), and thus citizens would be interested in news in foreign countries. We build a system for worldwide COVID-19 information aggregation containing reliable articles from 10 regions in 7 languages sorted by topics. Our reliable COVID-19 related website dataset collected through crowdsourcing ensures the quality of the articles. A neural machine translation module translates articles in other languages into Japanese and English. A BERT-based topic-classifier trained on our article-topic pair dataset helps users find their interested information efficiently by putting articles into different categories.
We apply small perturbations to word embeddings and minimize the resultant adversarial risk to regularize the model. We exploit a novel combination of two different approaches to estimate these perturbations: 1) using the true label and 2) using the model prediction. Without relying on any human-crafted features, knowledge bases, or additional datasets other than the target datasets, our model boosts the fine-tuning performance of RoBERTa, achieving competitive results on multiple reading comprehension datasets that require commonsense inference.
Recognizing temporal relations among events and time expressions has been an essential but challenging task in natural language processing. Conventional annotation of judging temporal relations puts a heavy load on annotators. In reality, the existing annotated corpora include annotations on only “salient” event pairs, or on pairs in a fixed window of sentences. In this paper, we propose a new approach to obtain temporal relations from absolute time value (a.k.a. time anchors), which is suitable for texts containing rich temporal information such as news articles. We start from time anchors for events and time expressions, and temporal relation annotations are induced automatically by computing relative order of two time anchors. This proposal shows several advantages over the current methods for temporal relation annotation: it requires less annotation effort, can induce inter-sentence relations easily, and increases informativeness of temporal relations. We compare the empirical statistics and automatic recognition results with our data against a previous temporal relation corpus. We also reveal that our data contributes to a significant improvement of the downstream time anchor prediction task, demonstrating 14.1 point increase in overall accuracy.
Temporal relation classification is becoming an active research field. Lots of methods have been proposed, while most of them focus on extracting features from external resources. Less attention has been paid to a significant advance in a closely related task: relation extraction. In this work, we borrow a state-of-the-art method in relation extraction by adopting bidirectional long short-term memory (Bi-LSTM) along dependency paths (DP). We make a “common root” assumption to extend DP representations of cross-sentence links. In the final comparison to two state-of-the-art systems on TimeBank-Dense, our model achieves comparable performance, without using external knowledge, as well as manually annotated attributes of entities (class, tense, polarity, etc.).
Synthetic word analysis is a potentially important but relatively unexplored problem in Chinese natural language processing. Two issues with the conventional pipeline methods involving word segmentation are (1) the lack of a common segmentation standard and (2) the poor segmentation performance on OOV words. These issues may be circumvented if we adopt the view of character-based parsing, providing both internal structures to synthetic words and global structure to sentences in a seamless fashion. However, the accuracy of synthetic word parsing is not yet satisfactory, due to the lack of research. In view of this, we propose and present experiments on several synthetic word parsers. Additionally, we demonstrate the usefulness of incorporating large unlabelled corpora and a dictionary for this task. Our parsers significantly outperform the baseline (a pipeline method).