Fei Yuan


pdf bib
Lego-MT: Learning Detachable Models for Massively Multilingual Machine Translation
Fei Yuan | Yinquan Lu | Wenhao Zhu | Lingpeng Kong | Lei Li | Yu Qiao | Jingjing Xu
Findings of the Association for Computational Linguistics: ACL 2023

Multilingual neural machine translation (MNMT) aims to build a unified model for many language directions. Existing monolithic models for MNMT encounter two challenges: parameter interference among languages and inefficient inference for large models. In this paper, we revisit the classic multi-way structures and develop a detachable model by assigning each language (or group of languages) to an individual branch that supports plug-and-play training and inference. To address the needs of learning representations for all languages in a unified space, we propose a novel efficient training recipe, upon which we build an effective detachable model, Lego-MT.For a fair comparison, we collect data from OPUS and build a translation benchmark covering 433 languages and 1.3B parallel data. Experiments show that Lego-MT with 1.2B parameters brings an average gain of 3.2 spBLEU. It even outperforms M2M-100 with 12B parameters. The proposed training recipe brings a 28.2× speedup over the conventional multi-way training method.code and data repo: https://github.com/CONE-MT/Lego-MT.git.

pdf bib
Extrapolating Multilingual Understanding Models as Multilingual Generators
Bohong Wu | Fei Yuan | Hai Zhao | Lei Li | Jingjing Xu
Findings of the Association for Computational Linguistics: EMNLP 2023

Multilingual understanding models (or encoder-based), pre-trained via masked language modeling, have achieved promising results on many language understanding tasks (e.g., mBERT). However, these models are not capable of generating high-quality text compared with decoder-based causal language models. Can we transform a pre-trained language understanding model into an effective language generation model? We propose a Semantic-Guided Alignment-then-Denoising (SGA) approach to adapt a multilingual encoder to a multilingual generator with a small number of additional parameters. Experiments show that the proposed approach is an effective adaption method, outperforming widely-used initialization-based methods with gains of 9.4 BLEU on machine translation, 8.1 Rouge-L on question generation, and 5.5 METEOR on story generation on XLM-Rlarge. On the other hand, we observe that XLM-R is still inferior to mBART in supervised settings despite better results on zero-shot settings, indicating that more exploration is required to make understanding models strong generators. Our code is available at https://github.com/chengzhipanpan/XLMR4MT.


pdf bib
Enhancing Answer Boundary Detection for Multilingual Machine Reading Comprehension
Fei Yuan | Linjun Shou | Xuanyu Bai | Ming Gong | Yaobo Liang | Nan Duan | Yan Fu | Daxin Jiang
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

Multilingual pre-trained models could leverage the training data from a rich source language (such as English) to improve performance on low resource languages. However, the transfer quality for multilingual Machine Reading Comprehension (MRC) is significantly worse than sentence classification tasks mainly due to the requirement of MRC to detect the word level answer boundary. In this paper, we propose two auxiliary tasks in the fine-tuning stage to create additional phrase boundary supervision: (1) A mixed MRC task, which translates the question or passage to other languages and builds cross-lingual question-passage pairs; (2) A language-agnostic knowledge masking task by leveraging knowledge phrases mined from web. Besides, extensive experiments on two cross-lingual MRC datasets show the effectiveness of our proposed approach.