Felix Stahlberg


pdf bib
Long-Form Speech Translation through Segmentation with Finite-State Decoding Constraints on Large Language Models
Arya McCarthy | Hao Zhang | Shankar Kumar | Felix Stahlberg | Ke Wu
Findings of the Association for Computational Linguistics: EMNLP 2023

One challenge in speech translation is that plenty of spoken content is long-form, but short units are necessary for obtaining high-quality translations. To address this mismatch, we adapt large language models (LLMs) to split long ASR transcripts into segments that can be independently translated so as to maximize the overall translation quality. We overcome the tendency of hallucination in LLMs by incorporating finite-state constraints during decoding; these eliminate invalid outputs without requiring additional training. We discover that LLMs are adaptable to transcripts containing ASR errors through prompt-tuning or fine-tuning. Relative to a state-of-the-art automatic punctuation baseline, our best LLM improves the average BLEU by 2.9 points for English–German, English–Spanish, and English–Arabic TED talk translation in 9 test sets, just by improving segmentation.


pdf bib
Uncertainty Determines the Adequacy of the Mode and the Tractability of Decoding in Sequence-to-Sequence Models
Felix Stahlberg | Ilia Kulikov | Shankar Kumar
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

In many natural language processing (NLP) tasks the same input (e.g. source sentence) can have multiple possible outputs (e.g. translations). To analyze how this ambiguity (also known as intrinsic uncertainty) shapes the distribution learned by neural sequence models we measure sentence-level uncertainty by computing the degree of overlap between references in multi-reference test sets from two different NLP tasks: machine translation (MT) and grammatical error correction (GEC). At both the sentence- and the task-level, intrinsic uncertainty has major implications for various aspects of search such as the inductive biases in beam search and the complexity of exact search. In particular, we show that well-known pathologies such as a high number of beam search errors, the inadequacy of the mode, and the drop in system performance with large beam sizes apply to tasks with high level of ambiguity such as MT but not to less uncertain tasks such as GEC. Furthermore, we propose a novel exact n-best search algorithm for neural sequence models, and show that intrinsic uncertainty affects model uncertainty as the model tends to overly spread out the probability mass for uncertain tasks and sentences.

pdf bib
Conciseness: An Overlooked Language Task
Felix Stahlberg | Aashish Kumar | Chris Alberti | Shankar Kumar
Proceedings of the Workshop on Text Simplification, Accessibility, and Readability (TSAR-2022)

We report on novel investigations into training models that make sentences concise. We define the task and show that it is different from related tasks such as summarization and simplification. For evaluation, we release two test sets, consisting of 2000 sentences each, that were annotated by two and five human annotators, respectively. We demonstrate that conciseness is a difficult task for which zero-shot setups with large neural language models often do not perform well. Given the limitations of these approaches, we propose a synthetic data generation method based on round-trip translations. Using this data to either train Transformers from scratch or fine-tune T5 models yields our strongest baselines that can be further improved by fine-tuning on an artificial conciseness dataset that we derived from multi-annotator machine translation test sets.

pdf bib
Jam or Cream First? Modeling Ambiguity in Neural Machine Translation with SCONES
Felix Stahlberg | Shankar Kumar
Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

The softmax layer in neural machine translation is designed to model the distribution over mutually exclusive tokens. Machine translation, however, is intrinsically uncertain: the same source sentence can have multiple semantically equivalent translations. Therefore, we propose to replace the softmax activation with a multi-label classification layer that can model ambiguity more effectively. We call our loss function Single-label Contrastive Objective for Non-Exclusive Sequences (SCONES). We show that the multi-label output layer can still be trained on single reference training data using the SCONES loss function. SCONES yields consistent BLEU score gains across six translation directions, particularly for medium-resource language pairs and small beam sizes. By using smaller beam sizes we can speed up inference by a factor of 3.9x and still match or improve the BLEU score obtained using softmax. Furthermore, we demonstrate that SCONES can be used to train NMT models that assign the highest probability to adequate translations, thus mitigating the “beam search curse”. Additional experiments on synthetic language pairs with varying levels of uncertainty suggest that the improvements from SCONES can be attributed to better handling of ambiguity.

pdf bib
Text Generation with Text-Editing Models
Eric Malmi | Yue Dong | Jonathan Mallinson | Aleksandr Chuklin | Jakub Adamek | Daniil Mirylenka | Felix Stahlberg | Sebastian Krause | Shankar Kumar | Aliaksei Severyn
Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies: Tutorial Abstracts

Text-editing models have recently become a prominent alternative to seq2seq models for monolingual text-generation tasks such as grammatical error correction, text simplification, and style transfer. These tasks share a common trait – they exhibit a large amount of textual overlap between the source and target texts. Text-editing models take advantage of this observation and learn to generate the output by predicting edit operations applied to the source sequence. In contrast, seq2seq models generate outputs word-by-word from scratch thus making them slow at inference time. Text-editing models provide several benefits over seq2seq models including faster inference speed, higher sample efficiency, and better control and interpretability of the outputs. This tutorial provides a comprehensive overview of the text-edit based models and current state-of-the-art approaches analyzing their pros and cons. We discuss challenges related to deployment and how these models help to mitigate hallucination and bias, both pressing challenges in the field of text generation.


pdf bib
Synthetic Data Generation for Grammatical Error Correction with Tagged Corruption Models
Felix Stahlberg | Shankar Kumar
Proceedings of the 16th Workshop on Innovative Use of NLP for Building Educational Applications

Synthetic data generation is widely known to boost the accuracy of neural grammatical error correction (GEC) systems, but existing methods often lack diversity or are too simplistic to generate the broad range of grammatical errors made by human writers. In this work, we use error type tags from automatic annotation tools such as ERRANT to guide synthetic data generation. We compare several models that can produce an ungrammatical sentence given a clean sentence and an error type tag. We use these models to build a new, large synthetic pre-training data set with error tag frequency distributions matching a given development set. Our synthetic data set yields large and consistent gains, improving the state-of-the-art on the BEA-19 and CoNLL-14 test sets. We also show that our approach is particularly effective in adapting a GEC system, trained on mixed native and non-native English, to a native English test set, even surpassing real training data consisting of high-quality sentence pairs.

pdf bib
Data Strategies for Low-Resource Grammatical Error Correction
Simon Flachs | Felix Stahlberg | Shankar Kumar
Proceedings of the 16th Workshop on Innovative Use of NLP for Building Educational Applications

Grammatical Error Correction (GEC) is a task that has been extensively investigated for the English language. However, for low-resource languages the best practices for training GEC systems have not yet been systematically determined. We investigate how best to take advantage of existing data sources for improving GEC systems for languages with limited quantities of high quality training data. We show that methods for generating artificial training data for GEC can benefit from including morphological errors. We also demonstrate that noisy error correction data gathered from Wikipedia revision histories and the language learning website Lang8, are valuable data sources. Finally, we show that GEC systems pre-trained on noisy data sources can be fine-tuned effectively using small amounts of high quality, human-annotated data.


pdf bib
Seq2Edits: Sequence Transduction Using Span-level Edit Operations
Felix Stahlberg | Shankar Kumar
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

We propose Seq2Edits, an open-vocabulary approach to sequence editing for natural language processing (NLP) tasks with a high degree of overlap between input and output texts. In this approach, each sequence-to-sequence transduction is represented as a sequence of edit operations, where each operation either replaces an entire source span with target tokens or keeps it unchanged. We evaluate our method on five NLP tasks (text normalization, sentence fusion, sentence splitting & rephrasing, text simplification, and grammatical error correction) and report competitive results across the board. For grammatical error correction, our method speeds up inference by up to 5.2x compared to full sequence models because inference time depends on the number of edits rather than the number of target tokens. For text normalization, sentence fusion, and grammatical error correction, our approach improves explainability by associating each edit operation with a human-readable tag.

pdf bib
Using Context in Neural Machine Translation Training Objectives
Danielle Saunders | Felix Stahlberg | Bill Byrne
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

We present Neural Machine Translation (NMT) training using document-level metrics with batch-level documents. Previous sequence-objective approaches to NMT training focus exclusively on sentence-level metrics like sentence BLEU which do not correspond to the desired evaluation metric, typically document BLEU. Meanwhile research into document-level NMT training focuses on data or model architecture rather than training procedure. We find that each of these lines of research has a clear space in it for the other, and propose merging them with a scheme that allows a document-level evaluation metric to be used in the NMT training objective. We first sample pseudo-documents from sentence samples. We then approximate the expected document BLEU gradient with Monte Carlo sampling for use as a cost function in Minimum Risk Training (MRT). This two-level sampling procedure gives NMT performance gains over sequence MRT and maximum-likelihood training. We demonstrate that training is more robust for document-level metrics than with sequence metrics. We further demonstrate improvements on NMT with TER and Grammatical Error Correction (GEC) using GLEU, both metrics used at the document level for evaluations.

pdf bib
The Roles of Language Models and Hierarchical Models in Neural Sequence-to-Sequence Prediction
Felix Stahlberg
Proceedings of the 22nd Annual Conference of the European Association for Machine Translation


pdf bib
Domain Adaptive Inference for Neural Machine Translation
Danielle Saunders | Felix Stahlberg | Adrià de Gispert | Bill Byrne
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics

We investigate adaptive ensemble weighting for Neural Machine Translation, addressing the case of improving performance on a new and potentially unknown domain without sacrificing performance on the original domain. We adapt sequentially across two Spanish-English and three English-German tasks, comparing unregularized fine-tuning, L2 and Elastic Weight Consolidation. We then report a novel scheme for adaptive NMT ensemble decoding by extending Bayesian Interpolation with source information, and report strong improvements across test domains without access to the domain label.

pdf bib
The CUED’s Grammatical Error Correction Systems for BEA-2019
Felix Stahlberg | Bill Byrne
Proceedings of the Fourteenth Workshop on Innovative Use of NLP for Building Educational Applications

We describe two entries from the Cambridge University Engineering Department to the BEA 2019 Shared Task on grammatical error correction. Our submission to the low-resource track is based on prior work on using finite state transducers together with strong neural language models. Our system for the restricted track is a purely neural system consisting of neural language models and neural machine translation models trained with back-translation and a combination of checkpoint averaging and fine-tuning – without the help of any additional tools like spell checkers. The latter system has been used inside a separate system combination entry in cooperation with the Cambridge University Computer Lab.

pdf bib
Neural and FST-based approaches to grammatical error correction
Zheng Yuan | Felix Stahlberg | Marek Rei | Bill Byrne | Helen Yannakoudakis
Proceedings of the Fourteenth Workshop on Innovative Use of NLP for Building Educational Applications

In this paper, we describe our submission to the BEA 2019 shared task on grammatical error correction. We present a system pipeline that utilises both error detection and correction models. The input text is first corrected by two complementary neural machine translation systems: one using convolutional networks and multi-task learning, and another using a neural Transformer-based system. Training is performed on publicly available data, along with artificial examples generated through back-translation. The n-best lists of these two machine translation systems are then combined and scored using a finite state transducer (FST). Finally, an unsupervised re-ranking system is applied to the n-best output of the FST. The re-ranker uses a number of error detection features to re-rank the FST n-best list and identify the final 1-best correction hypothesis. Our system achieves 66.75% F 0.5 on error correction (ranking 4th), and 82.52% F 0.5 on token-level error detection (ranking 2nd) in the restricted track of the shared task.

pdf bib
Felix Stahlberg | Danielle Saunders | Adrià de Gispert | Bill Byrne
Proceedings of the Fourth Conference on Machine Translation (Volume 2: Shared Task Papers, Day 1)

Two techniques provide the fabric of the Cambridge University Engineering Department’s (CUED) entry to the WMT19 evaluation campaign: elastic weight consolidation (EWC) and different forms of language modelling (LMs). We report substantial gains by fine-tuning very strong baselines on former WMT test sets using a combination of checkpoint averaging and EWC. A sentence-level Transformer LM and a document-level LM based on a modified Transformer architecture yield further gains. As in previous years, we also extract n-gram probabilities from SMT lattices which can be seen as a source-conditioned n-gram LM.

pdf bib
UCAM Biomedical Translation at WMT19: Transfer Learning Multi-domain Ensembles
Danielle Saunders | Felix Stahlberg | Bill Byrne
Proceedings of the Fourth Conference on Machine Translation (Volume 3: Shared Task Papers, Day 2)

The 2019 WMT Biomedical translation task involved translating Medline abstracts. We approached this using transfer learning to obtain a series of strong neural models on distinct domains, and combining them into multi-domain ensembles. We further experimented with an adaptive language-model ensemble weighting scheme. Our submission achieved the best submitted results on both directions of English-Spanish.

pdf bib
On NMT Search Errors and Model Errors: Cat Got Your Tongue?
Felix Stahlberg | Bill Byrne
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)

We report on search errors and model errors in neural machine translation (NMT). We present an exact inference procedure for neural sequence models based on a combination of beam search and depth-first search. We use our exact search to find the global best model scores under a Transformer base model for the entire WMT15 English-German test set. Surprisingly, beam search fails to find these global best model scores in most cases, even with a very large beam size of 100. For more than 50% of the sentences, the model in fact assigns its global best score to the empty translation, revealing a massive failure of neural models in properly accounting for adequacy. We show by constraining search with a minimum translation length that at the root of the problem of empty translations lies an inherent bias towards shorter translations. We conclude that vanilla NMT in its current form requires just the right amount of beam search errors, which, from a modelling perspective, is a highly unsatisfactory conclusion indeed, as the model often prefers an empty translation.

pdf bib
Neural Grammatical Error Correction with Finite State Transducers
Felix Stahlberg | Christopher Bryant | Bill Byrne
Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)

Grammatical error correction (GEC) is one of the areas in natural language processing in which purely neural models have not yet superseded more traditional symbolic models. Hybrid systems combining phrase-based statistical machine translation (SMT) and neural sequence models are currently among the most effective approaches to GEC. However, both SMT and neural sequence-to-sequence models require large amounts of annotated data. Language model based GEC (LM-GEC) is a promising alternative which does not rely on annotated training data. We show how to improve LM-GEC by applying modelling techniques based on finite state transducers. We report further gains by rescoring with neural language models. We show that our methods developed for LM-GEC can also be used with SMT systems if annotated training data is available. Our best system outperforms the best published result on the CoNLL-2014 test set, and achieves far better relative improvements over the SMT baselines than previous hybrid systems.

pdf bib
Neural Models of Text Normalization for Speech Applications
Hao Zhang | Richard Sproat | Axel H. Ng | Felix Stahlberg | Xiaochang Peng | Kyle Gorman | Brian Roark
Computational Linguistics, Volume 45, Issue 2 - June 2019

Machine learning, including neural network techniques, have been applied to virtually every domain in natural language processing. One problem that has been somewhat resistant to effective machine learning solutions is text normalization for speech applications such as text-to-speech synthesis (TTS). In this application, one must decide, for example, that 123 is verbalized as one hundred twenty three in 123 pages but as one twenty three in 123 King Ave. For this task, state-of-the-art industrial systems depend heavily on hand-written language-specific grammars. We propose neural network models that treat text normalization for TTS as a sequence-to-sequence problem, in which the input is a text token in context, and the output is the verbalization of that token. We find that the most effective model, in accuracy and efficiency, is one where the sentential context is computed once and the results of that computation are combined with the computation of each token in sequence to compute the verbalization. This model allows for a great deal of flexibility in terms of representing the context, and also allows us to integrate tagging and segmentation into the process. These models perform very well overall, but occasionally they will predict wildly inappropriate verbalizations, such as reading 3 cm as three kilometers. Although rare, such verbalizations are a major issue for TTS applications. We thus use finite-state covering grammars to guide the neural models, either during training and decoding, or just during decoding, away from such “unrecoverable” errors. Such grammars can largely be learned from data.


pdf bib
Multi-representation ensembles and delayed SGD updates improve syntax-based NMT
Danielle Saunders | Felix Stahlberg | Adrià de Gispert | Bill Byrne
Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)

We explore strategies for incorporating target syntax into Neural Machine Translation. We specifically focus on syntax in ensembles containing multiple sentence representations. We formulate beam search over such ensembles using WFSTs, and describe a delayed SGD update training procedure that is especially effective for long representations like linearized syntax. Our approach gives state-of-the-art performance on a difficult Japanese-English task.

pdf bib
Why not be Versatile? Applications of the SGNMT Decoder for Machine Translation
Felix Stahlberg | Danielle Saunders | Gonzalo Iglesias | Bill Byrne
Proceedings of the 13th Conference of the Association for Machine Translation in the Americas (Volume 1: Research Track)

pdf bib
An Operation Sequence Model for Explainable Neural Machine Translation
Felix Stahlberg | Danielle Saunders | Bill Byrne
Proceedings of the 2018 EMNLP Workshop BlackboxNLP: Analyzing and Interpreting Neural Networks for NLP

We propose to achieve explainable neural machine translation (NMT) by changing the output representation to explain itself. We present a novel approach to NMT which generates the target sentence by monotonically walking through the source sentence. Word reordering is modeled by operations which allow setting markers in the target sentence and move a target-side write head between those markers. In contrast to many modern neural models, our system emits explicit word alignment information which is often crucial to practical machine translation as it improves explainability. Our technique can outperform a plain text system in terms of BLEU score under the recent Transformer architecture on Japanese-English and Portuguese-English, and is within 0.5 BLEU difference on Spanish-English.

pdf bib
Simple Fusion: Return of the Language Model
Felix Stahlberg | James Cross | Veselin Stoyanov
Proceedings of the Third Conference on Machine Translation: Research Papers

Neural Machine Translation (NMT) typically leverages monolingual data in training through backtranslation. We investigate an alternative simple method to use monolingual data for NMT training: We combine the scores of a pre-trained and fixed language model (LM) with the scores of a translation model (TM) while the TM is trained from scratch. To achieve that, we train the translation model to predict the residual probability of the training data added to the prediction of the LM. This enables the TM to focus its capacity on modeling the source sentence since it can rely on the LM for fluency. We show that our method outperforms previous approaches to integrate LMs into NMT while the architecture is simpler as it does not require gating networks to balance TM and LM. We observe gains of between +0.24 and +2.36 BLEU on all four test sets (English-Turkish, Turkish-English, Estonian-English, Xhosa-English) on top of ensembles without LM. We compare our method with alternative ways to utilize monolingual data such as backtranslation, shallow fusion, and cold fusion.

pdf bib
The University of Cambridge’s Machine Translation Systems for WMT18
Felix Stahlberg | Adrià de Gispert | Bill Byrne
Proceedings of the Third Conference on Machine Translation: Shared Task Papers

The University of Cambridge submission to the WMT18 news translation task focuses on the combination of diverse models of translation. We compare recurrent, convolutional, and self-attention-based neural models on German-English, English-German, and Chinese-English. Our final system combines all neural models together with a phrase-based SMT system in an MBR-based scheme. We report small but consistent gains on top of strong Transformer ensembles.


pdf bib
Neural Machine Translation by Minimising the Bayes-risk with Respect to Syntactic Translation Lattices
Felix Stahlberg | Adrià de Gispert | Eva Hasler | Bill Byrne
Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics: Volume 2, Short Papers

We present a novel scheme to combine neural machine translation (NMT) with traditional statistical machine translation (SMT). Our approach borrows ideas from linearised lattice minimum Bayes-risk decoding for SMT. The NMT score is combined with the Bayes-risk of the translation according the SMT lattice. This makes our approach much more flexible than n-best list or lattice rescoring as the neural decoder is not restricted to the SMT search space. We show an efficient and simple way to integrate risk estimation into the NMT decoder which is suitable for word-level as well as subword-unit-level NMT. We test our method on English-German and Japanese-English and report significant gains over lattice rescoring on several data sets for both single and ensembled NMT. The MBR decoder produces entirely new hypotheses far beyond simply rescoring the SMT search space or fixing UNKs in the NMT output.

pdf bib
Unfolding and Shrinking Neural Machine Translation Ensembles
Felix Stahlberg | Bill Byrne
Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing

Ensembling is a well-known technique in neural machine translation (NMT) to improve system performance. Instead of a single neural net, multiple neural nets with the same topology are trained separately, and the decoder generates predictions by averaging over the individual models. Ensembling often improves the quality of the generated translations drastically. However, it is not suitable for production systems because it is cumbersome and slow. This work aims to reduce the runtime to be on par with a single system without compromising the translation quality. First, we show that the ensemble can be unfolded into a single large neural network which imitates the output of the ensemble system. We show that unfolding can already improve the runtime in practice since more work can be done on the GPU. We proceed by describing a set of techniques to shrink the unfolded network by reducing the dimensionality of layers. On Japanese-English we report that the resulting network has the size and decoding speed of a single NMT network but performs on the level of a 3-ensemble system.

pdf bib
SGNMT – A Flexible NMT Decoding Platform for Quick Prototyping of New Models and Search Strategies
Felix Stahlberg | Eva Hasler | Danielle Saunders | Bill Byrne
Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing: System Demonstrations

This paper introduces SGNMT, our experimental platform for machine translation research. SGNMT provides a generic interface to neural and symbolic scoring modules (predictors) with left-to-right semantic such as translation models like NMT, language models, translation lattices, n-best lists or other kinds of scores and constraints. Predictors can be combined with other predictors to form complex decoding tasks. SGNMT implements a number of search strategies for traversing the space spanned by the predictors which are appropriate for different predictor constellations. Adding new predictors or decoding strategies is particularly easy, making it a very efficient tool for prototyping new research ideas. SGNMT is actively being used by students in the MPhil program in Machine Learning, Speech and Language Technology at the University of Cambridge for course work and theses, as well as for most of the research work in our group.

pdf bib
A Comparison of Neural Models for Word Ordering
Eva Hasler | Felix Stahlberg | Marcus Tomalin | Adrià de Gispert | Bill Byrne
Proceedings of the 10th International Conference on Natural Language Generation

We compare several language models for the word-ordering task and propose a new bag-to-sequence neural model based on attention-based sequence-to-sequence models. We evaluate the model on a large German WMT data set where it significantly outperforms existing models. We also describe a novel search strategy for LM-based word ordering and report results on the English Penn Treebank. Our best model setup outperforms prior work both in terms of speed and quality.


pdf bib
The Edit Distance Transducer in Action: The University of Cambridge English-German System at WMT16
Felix Stahlberg | Eva Hasler | Bill Byrne
Proceedings of the First Conference on Machine Translation: Volume 2, Shared Task Papers

pdf bib
Syntactically Guided Neural Machine Translation
Felix Stahlberg | Eva Hasler | Aurelien Waite | Bill Byrne
Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)