Fenfei Guo


2022

pdf bib
Automatic Song Translation for Tonal Languages
Fenfei Guo | Chen Zhang | Zhirui Zhang | Qixin He | Kejun Zhang | Jun Xie | Jordan Boyd-Graber
Findings of the Association for Computational Linguistics: ACL 2022

This paper develops automatic song translation (AST) for tonal languages and addresses the unique challenge of aligning words’ tones with melody of a song in addition to conveying the original meaning. We propose three criteria for effective AST—preserving meaning, singability and intelligibility—and design metrics for these criteria. We develop a new benchmark for English–Mandarin song translation and develop an unsupervised AST system, Guided AliGnment for Automatic Song Translation (GagaST), which combines pre-training with three decoding constraints. Both automatic and human evaluations show GagaST successfully balances semantics and singability.

2020

pdf bib
Which Evaluations Uncover Sense Representations that Actually Make Sense?
Jordan Boyd-Graber | Fenfei Guo | Leah Findlater | Mohit Iyyer
Proceedings of the Twelfth Language Resources and Evaluation Conference

Text representations are critical for modern natural language processing. One form of text representation, sense-specific embeddings, reflect a word’s sense in a sentence better than single-prototype word embeddings tied to each type. However, existing sense representations are not uniformly better: although they work well for computer-centric evaluations, they fail for human-centric tasks like inspecting a language’s sense inventory. To expose this discrepancy, we propose a new coherence evaluation for sense embeddings. We also describe a minimal model (Gumbel Attention for Sense Induction) optimized for discovering interpretable sense representations that are more coherent than existing sense embeddings.

pdf bib
XGLUE: A New Benchmark Dataset for Cross-lingual Pre-training, Understanding and Generation
Yaobo Liang | Nan Duan | Yeyun Gong | Ning Wu | Fenfei Guo | Weizhen Qi | Ming Gong | Linjun Shou | Daxin Jiang | Guihong Cao | Xiaodong Fan | Ruofei Zhang | Rahul Agrawal | Edward Cui | Sining Wei | Taroon Bharti | Ying Qiao | Jiun-Hung Chen | Winnie Wu | Shuguang Liu | Fan Yang | Daniel Campos | Rangan Majumder | Ming Zhou
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

In this paper, we introduce XGLUE, a new benchmark dataset to train large-scale cross-lingual pre-trained models using multilingual and bilingual corpora, and evaluate their performance across a diverse set of cross-lingual tasks. Comparing to GLUE (Wang et al.,2019), which is labeled in English and includes natural language understanding tasks only, XGLUE has three main advantages: (1) it provides two corpora with different sizes for cross-lingual pre-training; (2) it provides 11 diversified tasks that cover both natural language understanding and generation scenarios; (3) for each task, it provides labeled data in multiple languages. We extend a recent cross-lingual pre-trained model Unicoder (Huang et al., 2019) to cover both understanding and generation tasks, which is evaluated on XGLUE as a strong baseline. We also evaluate the base versions (12-layer) of Multilingual BERT, XLM and XLM-R for comparison.