Feng Han
2024
VIEWS: Entity-Aware News Video Captioning
Hammad Ayyubi
|
Tianqi Liu
|
Arsha Nagrani
|
Xudong Lin
|
Mingda Zhang
|
Anurag Arnab
|
Feng Han
|
Yukun Zhu
|
Xuande Feng
|
Kevin Zhang
|
Jialu Liu
|
Shih-Fu Chang
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing
Existing popular video captioning benchmarks and models often produce generic captions for videos that lack specific identification of individuals, locations, or organizations (named entities). However, in the case of news videos, the setting is more demanding, requiring the inclusion of such named entities for meaningful summarization. Therefore, we introduce the task of directly summarizing news videos into captions that are entity-aware. To facilitate research in this area, we have collected a large-scale dataset named VIEWS (VIdeo NEWS). Within this task, we face challenges inherent to recognizing named entities and navigating diverse, dynamic contexts, all while relying solely on visual cues. To address these challenges, we propose a model-agnostic approach that enriches visual information extracted from videos with context sourced from external knowledge, enabling the generation of entity-aware captions. We validate the effectiveness of our approach across three video captioning models. Additionally, we conduct a critical analysis of our methodology to gain insights into the complexity of the task, the challenges it presents, and potential avenues for future research.
PLaD: Preference-based Large Language Model Distillation with Pseudo-Preference Pairs
Rongzhi Zhang
|
Jiaming Shen
|
Tianqi Liu
|
Haorui Wang
|
Zhen Qin
|
Feng Han
|
Jialu Liu
|
Simon Baumgartner
|
Michael Bendersky
|
Chao Zhang
Findings of the Association for Computational Linguistics: ACL 2024
Large Language Models (LLMs) have exhibited impressive capabilities in various tasks, yet their vast parameter sizes restrict their applicability in resource-constrained settings. Knowledge distillation (KD) offers a viable solution by transferring expertise from large teacher models to compact student models. However, traditional KD techniques face specific challenges when applied to LLMs, including restricted access to LLM outputs, significant teacher-student capacity gaps, and the inherited mis-calibration issue. In this work, we present PLaD, a novel preference-based LLM distillation framework. PLaD exploits the teacher-student capacity discrepancy to generate pseudo-preference pairs where teacher outputs are preferred over student outputs. Then, PLaD leverages a ranking loss to re-calibrate the student’s estimation of sequence likelihood, which steers the student’s focus towards understanding the relative quality of outputs instead of simply imitating the teacher. PLaD bypasses the need for access to teacher LLM’s internal states, tackles the student’s expressivity limitations, and mitigates the student mis-calibration issue. Through extensive experiments on two sequence generation tasks and with various LLMs, we demonstrate the effectiveness of our proposed PLaD framework.
Search
Fix data
Co-authors
- Tianqi Liu 2
- Jialu Liu 2
- Anurag Arnab 1
- Hammad Ayyubi 1
- Simon Baumgartner 1
- show all...