Feng Ji


2021

pdf bib
KACE: Generating Knowledge Aware Contrastive Explanations for Natural Language Inference
Qianglong Chen | Feng Ji | Xiangji Zeng | Feng-Lin Li | Ji Zhang | Haiqing Chen | Yin Zhang
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

In order to better understand the reason behind model behaviors (i.e., making predictions), most recent works have exploited generative models to provide complementary explanations. However, existing approaches in NLP mainly focus on “WHY A” rather than contrastive “WHY A NOT B”, which is shown to be able to better distinguish confusing candidates and improve data efficiency in other research fields. In this paper, we focus on generating contrastive explanations with counterfactual examples in NLI and propose a novel Knowledge-Aware Contrastive Explanation generation framework (KACE).Specifically, we first identify rationales (i.e., key phrases) from input sentences, and use them as key perturbations for generating counterfactual examples. After obtaining qualified counterfactual examples, we take them along with original examples and external knowledge as input, and employ a knowledge-aware generative pre-trained language model to generate contrastive explanations. Experimental results show that contrastive explanations are beneficial to fit the scenarios by clarifying the difference between the predicted answer and other possible wrong ones. Moreover, we train an NLI model enhanced with contrastive explanations and achieves an accuracy of 91.9% on SNLI, gaining improvements of 5.7% against ETPA (“Explain-Then-Predict-Attention”) and 0.6% against NILE (“WHY A”).

pdf bib
REPT: Bridging Language Models and Machine Reading Comprehension via Retrieval-Based Pre-training
Fangkai Jiao | Yangyang Guo | Yilin Niu | Feng Ji | Feng-Lin Li | Liqiang Nie
Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021

2020

pdf bib
Improving Commonsense Question Answering by Graph-based Iterative Retrieval over Multiple Knowledge Sources
Qianglong Chen | Feng Ji | Haiqing Chen | Yin Zhang
Proceedings of the 28th International Conference on Computational Linguistics

In order to facilitate natural language understanding, the key is to engage commonsense or background knowledge. However, how to engage commonsense effectively in question answering systems is still under exploration in both research academia and industry. In this paper, we propose a novel question-answering method by integrating multiple knowledge sources, i.e. ConceptNet, Wikipedia, and the Cambridge Dictionary, to boost the performance. More concretely, we first introduce a novel graph-based iterative knowledge retrieval module, which iteratively retrieves concepts and entities related to the given question and its choices from multiple knowledge sources. Afterward, we use a pre-trained language model to encode the question, retrieved knowledge and choices, and propose an answer choice-aware attention mechanism to fuse all hidden representations of the previous modules. Finally, the linear classifier for specific tasks is used to predict the answer. Experimental results on the CommonsenseQA dataset show that our method significantly outperforms other competitive methods and achieves the new state-of-the-art. In addition, further ablation studies demonstrate the effectiveness of our graph-based iterative knowledge retrieval module and the answer choice-aware attention module in retrieving and synthesizing background knowledge from multiple knowledge sources.

pdf bib
Transformation of Dense and Sparse Text Representations
Wenpeng Hu | Mengyu Wang | Bing Liu | Feng Ji | Jinwen Ma | Dongyan Zhao
Proceedings of the 28th International Conference on Computational Linguistics

Sparsity is regarded as a desirable property of representations, especially in terms of explanation. However, its usage has been limited due to the gap with dense representations. Most research progresses in NLP in recent years are based on dense representations. Thus the desirable property of sparsity cannot be leveraged. Inspired by Fourier Transformation, in this paper, we propose a novel Semantic Transformation method to bridge the dense and sparse spaces, which can facilitate the NLP research to shift from dense spaces to sparse spaces or to jointly use both spaces. Experiments using classification tasks and natural language inference task show that the proposed Semantic Transformation is effective.

2019

pdf bib
Task-Oriented Conversation Generation Using Heterogeneous Memory Networks
Zehao Lin | Xinjing Huang | Feng Ji | Haiqing Chen | Yin Zhang
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)

How to incorporate external knowledge into a neural dialogue model is critically important for dialogue systems to behave like real humans. To handle this problem, memory networks are usually a great choice and a promising way. However, existing memory networks do not perform well when leveraging heterogeneous information from different sources. In this paper, we propose a novel and versatile external memory networks called Heterogeneous Memory Networks (HMNs), to simultaneously utilize user utterances, dialogue history and background knowledge tuples. In our method, historical sequential dialogues are encoded and stored into the context-aware memory enhanced by gating mechanism while grounding knowledge tuples are encoded and stored into the context-free memory. During decoding, the decoder augmented with HMNs recurrently selects each word in one response utterance from these two memories and a general vocabulary. Experimental results on multiple real-world datasets show that HMNs significantly outperform the state-of-the-art data-driven task-oriented dialogue models in most domains.

pdf bib
Simple and Effective Text Matching with Richer Alignment Features
Runqi Yang | Jianhai Zhang | Xing Gao | Feng Ji | Haiqing Chen
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics

In this paper, we present a fast and strong neural approach for general purpose text matching applications. We explore what is sufficient to build a fast and well-performed text matching model and propose to keep three key features available for inter-sequence alignment: original point-wise features, previous aligned features, and contextual features while simplifying all the remaining components. We conduct experiments on four well-studied benchmark datasets across tasks of natural language inference, paraphrase identification and answer selection. The performance of our model is on par with the state-of-the-art on all datasets with much fewer parameters and the inference speed is at least 6 times faster compared with similarly performed ones.

2018

pdf bib
A Deep Relevance Model for Zero-Shot Document Filtering
Chenliang Li | Wei Zhou | Feng Ji | Yu Duan | Haiqing Chen
Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

In the era of big data, focused analysis for diverse topics with a short response time becomes an urgent demand. As a fundamental task, information filtering therefore becomes a critical necessity. In this paper, we propose a novel deep relevance model for zero-shot document filtering, named DAZER. DAZER estimates the relevance between a document and a category by taking a small set of seed words relevant to the category. With pre-trained word embeddings from a large external corpus, DAZER is devised to extract the relevance signals by modeling the hidden feature interactions in the word embedding space. The relevance signals are extracted through a gated convolutional process. The gate mechanism controls which convolution filters output the relevance signals in a category dependent manner. Experiments on two document collections of two different tasks (i.e., topic categorization and sentiment analysis) demonstrate that DAZER significantly outperforms the existing alternative solutions, including the state-of-the-art deep relevance ranking models.

pdf bib
Transfer Learning for Context-Aware Question Matching in Information-seeking Conversations in E-commerce
Minghui Qiu | Liu Yang | Feng Ji | Wei Zhou | Jun Huang | Haiqing Chen | Bruce Croft | Wei Lin
Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)

Building multi-turn information-seeking conversation systems is an important and challenging research topic. Although several advanced neural text matching models have been proposed for this task, they are generally not efficient for industrial applications. Furthermore, they rely on a large amount of labeled data, which may not be available in real-world applications. To alleviate these problems, we study transfer learning for multi-turn information seeking conversations in this paper. We first propose an efficient and effective multi-turn conversation model based on convolutional neural networks. After that, we extend our model to adapt the knowledge learned from a resource-rich domain to enhance the performance. Finally, we deployed our model in an industrial chatbot called AliMe Assist and observed a significant improvement over the existing online model.

2012

pdf bib
Joint Segmentation and Tagging with Coupled Sequences Labeling
Xipeng Qiu | Feng Ji | Jiayi Zhao | Xuanjing Huang
Proceedings of COLING 2012: Posters

pdf bib
Part-of-Speech Tagging for Chinese-English Mixed Texts with Dynamic Features
Jiayi Zhao | Xipeng Qiu | Shu Zhang | Feng Ji | Xuanjing Huang
Proceedings of the 2012 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning

2010

pdf bib
Detecting Hedge Cues and their Scopes with Average Perceptron
Feng Ji | Xipeng Qiu | Xuanjing Huang
Proceedings of the Fourteenth Conference on Computational Natural Language Learning – Shared Task