Fenglin Liu


pdf bib
Multimodal Prompt Learning for Product Title Generation with Extremely Limited Labels
Bang Yang | Fenglin Liu | Zheng Li | Qingyu Yin | Chenyu You | Bing Yin | Yuexian Zou
Findings of the Association for Computational Linguistics: ACL 2023

Generating an informative and attractive title for the product is a crucial task for e-commerce. Most existing works follow the standard multimodal natural language generation approaches, e.g., image captioning, and employ the large scale of human-labelled datasets to train desirable models. However, for novel products, especially in a different domain, there are few existing labelled data. In this paper, we propose a prompt-based approach, i.e., the Multimodal Prompt Learning framework, to accurately and efficiently generate titles for novel products with limited labels. We observe that the core challenges of novel product title generation are the understanding of novel product characteristics and the generation of titles in a novel writing style. To this end, we build a set of multimodal prompts from different modalities to preserve the corresponding characteristics and writing styles of novel products. As a result, with extremely limited labels for training, the proposed method can retrieve the multimodal prompts to generate desirable titles for novel products. The experiments and analyses are conducted on five novel product categories under both the in-domain and out-of-domain experimental settings. The results show that, with only 1% of downstream labelled data for training, our proposed approach achieves the best few-shot results and even achieves competitive results with fully-supervised methods trained on 100% of training data; With the full labelled data for training, our method achieves state-of-the-art results.

pdf bib
MultiCapCLIP: Auto-Encoding Prompts for Zero-Shot Multilingual Visual Captioning
Bang Yang | Fenglin Liu | Xian Wu | Yaowei Wang | Xu Sun | Yuexian Zou
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Supervised visual captioning models typically require a large scale of images or videos paired with descriptions in a specific language (i.e., the vision-caption pairs) for training. However, collecting and labeling large-scale datasets is time-consuming and expensive for many scenarios and languages. Therefore, sufficient labeled pairs are usually not available. To deal with the label shortage problem, we present a simple yet effective zero-shot approach MultiCapCLIP that can generate visual captions for different scenarios and languages without any labeled vision-caption pairs of downstream datasets. In the training stage, MultiCapCLIP only requires text data for input. Then it conducts two main steps: 1) retrieving concept prompts that preserve the corresponding domain knowledge of new scenarios; 2) auto-encoding the prompts to learn writing styles to output captions in a desired language. In the testing stage, MultiCapCLIP instead takes visual data as input directly to retrieve the concept prompts to generate the final visual descriptions. The extensive experiments on image and video captioning across four benchmarks and four languages (i.e., English, Chinese, German, and French) confirm the effectiveness of our approach. Compared with state-of-the-art zero-shot and weakly-supervised methods, our method achieves 4.8% and 21.5% absolute improvements in terms of BLEU@4 and CIDEr metrics. Our code is available at https://github.com/yangbang18/MultiCapCLIP.


pdf bib
End-to-end Spoken Conversational Question Answering: Task, Dataset and Model
Chenyu You | Nuo Chen | Fenglin Liu | Shen Ge | Xian Wu | Yuexian Zou
Findings of the Association for Computational Linguistics: NAACL 2022

In spoken question answering, the systems are designed to answer questions from contiguous text spans within the related speech transcripts. However, the most natural way that human seek or test their knowledge is via human conversations. Therefore, we propose a new Spoken Conversational Question Answering task (SCQA), aiming at enabling the systems to model complex dialogues flow given the speech documents. In this task, our main objective is to build the system to deal with conversational questions based on the audio recordings, and to explore the plausibility of providing more cues from different modalities with systems in information gathering. To this end, instead of directly adopting automatically generated speech transcripts with highly noisy data, we propose a novel unified data distillation approach, DDNet, which effectively ingests cross-modal information to achieve fine-grained representations of the speech and language modalities. Moreover, we propose a simple and novel mechanism, termed Dual Attention, by encouraging better alignments between audio and text to ease the process of knowledge transfer. To evaluate the capacity of SCQA systems in a dialogue-style interaction, we assemble a Spoken Conversational Question Answering (Spoken-CoQA) dataset with more than 40k question-answer pairs from 4k conversations. We first show that the performance of the existing state-of-the-art methods significantly degrade on our dataset, hence demonstrating the necessity of incorporating cross-modal information to achieve good performance gains. Our experimental results demonstrate that our proposed method achieves superior performance in spoken conversational question answering. Codes and datasets will be made publicly available.


pdf bib
Contrastive Attention for Automatic Chest X-ray Report Generation
Fenglin Liu | Changchang Yin | Xian Wu | Shen Ge | Ping Zhang | Xu Sun
Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021

pdf bib
O2NA: An Object-Oriented Non-Autoregressive Approach for Controllable Video Captioning
Fenglin Liu | Xuancheng Ren | Xian Wu | Bang Yang | Shen Ge | Xu Sun
Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021

pdf bib
Competence-based Multimodal Curriculum Learning for Medical Report Generation
Fenglin Liu | Shen Ge | Xian Wu
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

Medical report generation task, which targets to produce long and coherent descriptions of medical images, has attracted growing research interests recently. Different from the general image captioning tasks, medical report generation is more challenging for data-driven neural models. This is mainly due to 1) the serious data bias and 2) the limited medical data. To alleviate the data bias and make best use of available data, we propose a Competence-based Multimodal Curriculum Learning framework (CMCL). Specifically, CMCL simulates the learning process of radiologists and optimizes the model in a step by step manner. Firstly, CMCL estimates the difficulty of each training instance and evaluates the competence of current model; Secondly, CMCL selects the most suitable batch of training instances considering current model competence. By iterating above two steps, CMCL can gradually improve the model’s performance. The experiments on the public IU-Xray and MIMIC-CXR datasets show that CMCL can be incorporated into existing models to improve their performance.


pdf bib
Federated Learning for Spoken Language Understanding
Zhiqi Huang | Fenglin Liu | Yuexian Zou
Proceedings of the 28th International Conference on Computational Linguistics

Recently, spoken language understanding (SLU) has attracted extensive research interests, and various SLU datasets have been proposed to promote the development. However, most of the existing methods focus on a single individual dataset, the efforts to improve the robustness of models and obtain better performance by combining the merits of various datasets are not well studied. In this paper, we argue that if these SLU datasets are considered together, different knowledge from different datasets could be learned jointly, and there are high chances to promote the performance of each dataset. At the same time, we further attempt to prevent data leakage when unifying multiple datasets which, arguably, is more useful in an industry setting. To this end, we propose a federated learning framework, which could unify various types of datasets as well as tasks to learn and fuse various types of knowledge, i.e., text representations, from different datasets and tasks, without the sharing of downstream task data. The fused text representations merge useful features from different SLU datasets and tasks and are thus much more powerful than the original text representations alone in individual tasks. At last, in order to provide multi-granularity text representations for our framework, we propose a novel Multi-view Encoder (MV-Encoder) as the backbone of our federated learning framework. Experiments on two SLU benchmark datasets, including two tasks (intention detection and slot filling) and federated learning settings (horizontal federated learning, vertical federated learning and federated transfer learning), demonstrate the effectiveness and universality of our approach. Specifically, we are able to get 1.53% improvement on the intent detection metric accuracy. And we could also boost the performance of a strong baseline by up to 5.29% on the slot filling metric F1. Furthermore, by leveraging BERT as an additional encoder, we establish new state-of-the-art results on SNIPS and ATIS datasets, where we get 99.33% and 98.28% in terms of accuracy on intent detection task as well as 97.20% and 96.41% in terms of F1 score on slot filling task, respectively.

pdf bib
Rethinking Skip Connection with Layer Normalization
Fenglin Liu | Xuancheng Ren | Zhiyuan Zhang | Xu Sun | Yuexian Zou
Proceedings of the 28th International Conference on Computational Linguistics

Skip connection is a widely-used technique to improve the performance and the convergence of deep neural networks, which is believed to relieve the difficulty in optimization due to non-linearity by propagating a linear component through the neural network layers. However, from another point of view, it can also be seen as a modulating mechanism between the input and the output, with the input scaled by a pre-defined value one. In this work, we investigate how the scale factors in the effectiveness of the skip connection and reveal that a trivial adjustment of the scale will lead to spurious gradient exploding or vanishing in line with the deepness of the models, which could by addressed by normalization, in particular, layer normalization, which induces consistent improvements over the plain skip connection. Inspired by the findings, we further propose to adaptively adjust the scale of the input by recursively applying skip connection with layer normalization, which promotes the performance substantially and generalizes well across diverse tasks including both machine translation and image classification datasets.


pdf bib
Self-Adaptive Scaling for Learnable Residual Structure
Fenglin Liu | Meng Gao | Yuanxin Liu | Kai Lei
Proceedings of the 23rd Conference on Computational Natural Language Learning (CoNLL)

Residual has been widely applied to build deep neural networks with enhanced feature propagation and improved accuracy. In the literature, multiple variants of residual structure are proposed. However, most of them are manually designed for particular tasks and datasets and the combination of existing residual structures has not been well studied. In this work, we propose the Self-Adaptive Scaling (SAS) approach that automatically learns the design of residual structure from data. The proposed approach makes the best of various residual structures, resulting in a general architecture covering several existing ones. In this manner, we construct a learnable residual structure which can be easily integrated into a wide range of residual-based models. We evaluate our approach on various tasks concerning different modalities, including machine translation (IWSLT-2015 EN-VI and WMT-2014 EN-DE, EN-FR), image classification (CIFAR-10 and CIFAR-100), and image captioning (MSCOCO). Empirical results show that the proposed approach consistently improves the residual-based models and exhibits desirable generalization ability. In particular, by incorporating the proposed approach to the Transformer model, we establish new state-of-the-arts on the IWSLT-2015 EN-VI low-resource machine translation dataset.


pdf bib
simNet: Stepwise Image-Topic Merging Network for Generating Detailed and Comprehensive Image Captions
Fenglin Liu | Xuancheng Ren | Yuanxin Liu | Houfeng Wang | Xu Sun
Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing

The encode-decoder framework has shown recent success in image captioning. Visual attention, which is good at detailedness, and semantic attention, which is good at comprehensiveness, have been separately proposed to ground the caption on the image. In this paper, we propose the Stepwise Image-Topic Merging Network (simNet) that makes use of the two kinds of attention at the same time. At each time step when generating the caption, the decoder adaptively merges the attentive information in the extracted topics and the image according to the generated context, so that the visual information and the semantic information can be effectively combined. The proposed approach is evaluated on two benchmark datasets and reaches the state-of-the-art performances.