Fenia Christopoulou


2021

pdf bib
Distantly Supervised Relation Extraction with Sentence Reconstruction and Knowledge Base Priors
Fenia Christopoulou | Makoto Miwa | Sophia Ananiadou
Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

We propose a multi-task, probabilistic approach to facilitate distantly supervised relation extraction by bringing closer the representations of sentences that contain the same Knowledge Base pairs. To achieve this, we bias the latent space of sentences via a Variational Autoencoder (VAE) that is trained jointly with a relation classifier. The latent code guides the pair representations and influences sentence reconstruction. Experimental results on two datasets created via distant supervision indicate that multi-task learning results in performance benefits. Additional exploration of employing Knowledge Base priors into theVAE reveals that the sentence space can be shifted towards that of the Knowledge Base, offering interpretability and further improving results.

2019

pdf bib
Connecting the Dots: Document-level Neural Relation Extraction with Edge-oriented Graphs
Fenia Christopoulou | Makoto Miwa | Sophia Ananiadou
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)

Document-level relation extraction is a complex human process that requires logical inference to extract relationships between named entities in text. Existing approaches use graph-based neural models with words as nodes and edges as relations between them, to encode relations across sentences. These models are node-based, i.e., they form pair representations based solely on the two target node representations. However, entity relations can be better expressed through unique edge representations formed as paths between nodes. We thus propose an edge-oriented graph neural model for document-level relation extraction. The model utilises different types of nodes and edges to create a document-level graph. An inference mechanism on the graph edges enables to learn intra- and inter-sentence relations using multi-instance learning internally. Experiments on two document-level biomedical datasets for chemical-disease and gene-disease associations show the usefulness of the proposed edge-oriented approach.

pdf bib
Inter-sentence Relation Extraction with Document-level Graph Convolutional Neural Network
Sunil Kumar Sahu | Fenia Christopoulou | Makoto Miwa | Sophia Ananiadou
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics

Inter-sentence relation extraction deals with a number of complex semantic relationships in documents, which require local, non-local, syntactic and semantic dependencies. Existing methods do not fully exploit such dependencies. We present a novel inter-sentence relation extraction model that builds a labelled edge graph convolutional neural network model on a document-level graph. The graph is constructed using various inter- and intra-sentence dependencies to capture local and non-local dependency information. In order to predict the relation of an entity pair, we utilise multi-instance learning with bi-affine pairwise scoring. Experimental results show that our model achieves comparable performance to the state-of-the-art neural models on two biochemistry datasets. Our analysis shows that all the types in the graph are effective for inter-sentence relation extraction.

2018

pdf bib
A Walk-based Model on Entity Graphs for Relation Extraction
Fenia Christopoulou | Makoto Miwa | Sophia Ananiadou
Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)

We present a novel graph-based neural network model for relation extraction. Our model treats multiple pairs in a sentence simultaneously and considers interactions among them. All the entities in a sentence are placed as nodes in a fully-connected graph structure. The edges are represented with position-aware contexts around the entity pairs. In order to consider different relation paths between two entities, we construct up to l-length walks between each pair. The resulting walks are merged and iteratively used to update the edge representations into longer walks representations. We show that the model achieves performance comparable to the state-of-the-art systems on the ACE 2005 dataset without using any external tools.

2016

pdf bib
Tweester at SemEval-2016 Task 4: Sentiment Analysis in Twitter Using Semantic-Affective Model Adaptation
Elisavet Palogiannidi | Athanasia Kolovou | Fenia Christopoulou | Filippos Kokkinos | Elias Iosif | Nikolaos Malandrakis | Haris Papageorgiou | Shrikanth Narayanan | Alexandros Potamianos
Proceedings of the 10th International Workshop on Semantic Evaluation (SemEval-2016)