Florian Schneider


pdf bib
Extending the Discourse Analysis Tool Suite with Whiteboards for Visual Qualitative Analysis
Tim Fischer | Florian Schneider | Fynn Petersen-Frey | Anja Silvia Mollah Haque | Isabel Eiser | Gertraud Koch | Chris Biemann
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)

In this system demonstration paper, we describe the Whiteboards extension for an existing web-based platform for digital qualitative discourse analysis. Whiteboards comprise interactive graph-based interfaces to organize and manipulate objects, which can be qualitative research data, such as documents, images, etc., and analyses of these research data, such as annotations, tags, and code structures. The proposed extension offers a customizable view of the material and a wide range of actions that enable new ways of interacting and working with such resources. We show that the visualizations facilitate various use cases of qualitative data analysis, including reflection of the research process through sampling maps, creation of actor networks, and refining code taxonomies.

pdf bib
Concept Over Time Analysis: Unveiling Temporal Patterns for Qualitative Data Analysis
Tim Fischer | Florian Schneider | Robert Geislinger | Florian Helfer | Gertraud Koch | Chris Biemann
Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 3: System Demonstrations)

In this system demonstration paper, we present the Concept Over Time Analysis extension for the Discourse Analysis Tool Suite.The proposed tool empowers users to define, refine, and visualize their concepts of interest within an interactive interface. Adhering to the Human-in-the-loop paradigm, users can give feedback through sentence annotations. Utilizing few-shot sentence classification, the system employs Sentence Transformers to compute representations of sentences and concepts. Through an iterative process involving semantic similarity searches, sentence annotation, and fine-tuning with contrastive data, the model continuously refines, providing users with enhanced analysis outcomes. The final output is a timeline visualization of sentences classified to concepts. Especially suited for the Digital Humanities, Concept Over Time Analysis serves as a valuable tool for qualitative data analysis within extensive datasets. The chronological overview of concepts enables researchers to uncover patterns, trends, and shifts in discourse over time.

pdf bib
VIDA: The Visual Incel Data Archive. A Theory-oriented Annotated Dataset To Enhance Hate Detection Through Visual Culture
Selenia Anastasi | Florian Schneider | Chris Biemann | Tim Fischer
Proceedings of the 8th Workshop on Online Abuse and Harms (WOAH 2024)

Images increasingly constitute a larger portion of internet content, encoding even more complex meanings. Recent studies have highlight the pivotal role of visual communication in the spread of extremist content, particularly that associated with right-wing political ideologies. However, the capability of machine learning systems to recognize such meanings, sometimes implicit, remains limited. To enable future research in this area, we introduce and release VIDA, the Visual Incel Data Archive, a multimodal dataset comprising visual material and internet memes collected from two main Incel communities (Italian and Anglophone) known for their extremist misogynistic content. Following the analytical framework of Shifman (2014), we propose a new taxonomy for annotation across three main levels of analysis: content, form, and stance (hate). This allows for the association of images with fine-grained contextual information that help to identify the presence of offensiveness and a broader set of cultural references, enhancing the understanding of more nuanced aspects in visual communication. In this work we present a statistical analysis of the annotated dataset as well as discuss annotation examples and future line of research.


pdf bib
CodeAnno: Extending WebAnno with Hierarchical Document Level Annotation and Automation
Florian Schneider | Seid Muhie Yimam | Fynn Petersen-frey | Gerret Von Nordheim | Katharina Kleinen-von K”onigsl”ow | Chris Biemann
Proceedings of the 17th Conference of the European Chapter of the Association for Computational Linguistics: System Demonstrations

WebAnno is one of the most popular annotation tools that supports generic annotation types and distributive annotation with multiple user roles. However, WebAnno focuses on annotating span-level mentions and relations among them, making document-level annotation complicated. When it comes to the annotation and analysis of social science materials, it usually involves the creation of codes to categorize a given document. The codes, which are known as codebooks, are typically hierarchical, which enables to code the document either with a general category or more fine-grained subcategories. CodeAnno is forked from WebAnno and designed to solve the coding problems faced by many social science researchers with the following main functionalities. 1) Creation of hierarchical codebooks, with functionality to move and sort categories in the hierarchy 2) an interactive UI for codebook annotation 3) import and export of annotations in CSV format, hence being compatible with existing annotations conducted using spreadsheet applications 4) integration of an external automation component to facilitate coding using machine learning 5) project templating that allows duplicating a project structure without copying the actual documents. We present different use-cases to demonstrate the capability of CodeAnno. A shot demonstration video of the system is available here: https://www.youtube.com/watch?v=RmCdTghBe-s

pdf bib
LT at SemEval-2023 Task 1: Effective Zero-Shot Visual Word Sense Disambiguation Approaches using External Knowledge Sources
Florian Schneider | Chris Biemann
Proceedings of the 17th International Workshop on Semantic Evaluation (SemEval-2023)

The objective of the SemEval-2023 Task 1: Visual Word Sense Disambiguation (VWSD) is to identify the image illustrating the indented meaning of a target word and some minimal additional context. The omnipresence of textual and visual data in the task strongly suggests the utilization of the recent advances in multi-modal machine learning, i.e., pretrained visiolinguistic models (VLMs). Often referred to as foundation models due to their strong performance on many vision-language downstream tasks, these models further demonstrate powerful zero-shot capabilities. In this work, we utilize various pertained VLMs in a zero-shot fashion for multiple approaches using external knowledge sources to enrich the contextual information. Further, we evaluate our methods on the final test data and extensively analyze the suitability of different knowledge sources, the influence of training data, model sizes, multi-linguality, and different textual prompting strategies. Although we are not among the best-performing systems (rank 20 of 56), our experiments described in this work prove competitive results. Moreover, we aim to contribute meaningful insights and propel multi-modal machine learning tasks like VWSD.

pdf bib
From Qualitative to Quantitative Research: Semi-Automatic Annotation Scaling in the Digital Humanities
Fynn Petersen-Frey | Tim Fischer | Florian Schneider | Isabel Eiser | Gertraud Koch | Chris Biemann
Proceedings of the 19th Conference on Natural Language Processing (KONVENS 2023)

pdf bib
The D-WISE Tool Suite: Multi-Modal Machine-Learning-Powered Tools Supporting and Enhancing Digital Discourse Analysis
Florian Schneider | Tim Fischer | Fynn Petersen-Frey | Isabel Eiser | Gertraud Koch | Chris Biemann
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 3: System Demonstrations)

This work introduces the D-WISE Tool Suite (DWTS), a novel working environment for digital qualitative discourse analysis in the Digital Humanities (DH). The DWTS addresses limitations of current DH tools induced by the ever-increasing amount of heterogeneous, unstructured, and multi-modal data in which the discourses of contemporary societies are encoded. To provide meaningful insights from such data, our system leverages and combines state-of-the-art machine learning technologies from Natural Language Processing and Com-puter Vision. Further, the DWTS is conceived and developed by an interdisciplinary team ofcultural anthropologists and computer scientists to ensure the tool’s usability for modernDH research. Central features of the DWTS are: a) import of multi-modal data like text, image, audio, and video b) preprocessing pipelines for automatic annotations c) lexical and semantic search of documents d) manual span, bounding box, time-span, and frame annotations e) documentation of the research process.


pdf bib
MOTIF: Contextualized Images for Complex Words to Improve Human Reading
Xintong Wang | Florian Schneider | Özge Alacam | Prateek Chaudhury | Chris Biemann
Proceedings of the Thirteenth Language Resources and Evaluation Conference

MOTIF (MultimOdal ConTextualized Images For Language Learners) is a multimodal dataset that consists of 1125 comprehension texts retrieved from Wikipedia Simple Corpus. Allowing multimodal processing or enriching the context with multimodal information has proven imperative for many learning tasks, specifically for second language (L2) learning. In this respect, several traditional NLP approaches can assist L2 readers in text comprehension processes, such as simplifying text or giving dictionary descriptions for complex words. As nicely stated in the well-known proverb, sometimes “a picture is worth a thousand words” and an image can successfully complement the verbal message by enriching the representation, like in Pictionary books. This multimodal support can also assist on-the-fly text reading experience by providing a multimodal tool that chooses and displays the most relevant images for the difficult words, given the text context. This study mainly focuses on one of the key components to achieving this goal; collecting a multimodal dataset enriched with complex word annotation and validated image match.

pdf bib
Language over Labels: Contrastive Language Supervision Exceeds Purely Label-Supervised Classification Performance on Chest X-Rays
Anton Wiehe | Florian Schneider | Sebastian Blank | Xintong Wang | Hans-Peter Zorn | Christian Biemann
Proceedings of the 2nd Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics and the 12th International Joint Conference on Natural Language Processing: Student Research Workshop

The multi-modal foundation model CLIP computes representations from texts and images that achieved unprecedented performance on tasks such as zero-shot image classification. However, CLIP was pretrained on public internet data. Thus it lacks highly domain-specific knowledge. We investigate the adaptation of CLIP-based models to the chest radiography domain using the MIMIC-CXR dataset. We show that the features of the pretrained CLIP models do not transfer to this domain. We adapt CLIP to the chest radiography domain using contrastive language supervision and show that this approach yields a model that outperforms supervised learning on labels on the MIMIC-CXR dataset while also generalizing to the CheXpert and RSNA Pneumonia datasets. Furthermore, we do a detailed ablation study of the batch and dataset size. Finally, we show that language supervision allows for better explainability by using the multi-modal model to generate images from texts such that experts can inspect what the model has learned.


pdf bib
Towards Multi-Modal Text-Image Retrieval to improve Human Reading
Florian Schneider | Özge Alaçam | Xintong Wang | Chris Biemann
Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Student Research Workshop

In primary school, children’s books, as well as in modern language learning apps, multi-modal learning strategies like illustrations of terms and phrases are used to support reading comprehension. Also, several studies in educational psychology suggest that integrating cross-modal information will improve reading comprehension. We claim that state-of- he-art multi-modal transformers, which could be used in a language learner context to improve human reading, will perform poorly because of the short and relatively simple textual data those models are trained with. To prove our hypotheses, we collected a new multi-modal image-retrieval dataset based on data from Wikipedia. In an in-depth data analysis, we highlight the differences between our dataset and other popular datasets. Additionally, we evaluate several state-of-the-art multi-modal transformers on text-image retrieval on our dataset and analyze their meager results, which verify our claims.