Francesco Cecconi


2021

pdf bib
WikiNEuRal: Combined Neural and Knowledge-based Silver Data Creation for Multilingual NER
Simone Tedeschi | Valentino Maiorca | Niccolò Campolungo | Francesco Cecconi | Roberto Navigli
Findings of the Association for Computational Linguistics: EMNLP 2021

Multilingual Named Entity Recognition (NER) is a key intermediate task which is needed in many areas of NLP. In this paper, we address the well-known issue of data scarcity in NER, especially relevant when moving to a multilingual scenario, and go beyond current approaches to the creation of multilingual silver data for the task. We exploit the texts of Wikipedia and introduce a new methodology based on the effective combination of knowledge-based approaches and neural models, together with a novel domain adaptation technique, to produce high-quality training corpora for NER. We evaluate our datasets extensively on standard benchmarks for NER, yielding substantial improvements up to 6 span-based F1-score points over previous state-of-the-art systems for data creation.

pdf bib
Named Entity Recognition for Entity Linking: What Works and What’s Next
Simone Tedeschi | Simone Conia | Francesco Cecconi | Roberto Navigli
Findings of the Association for Computational Linguistics: EMNLP 2021

Entity Linking (EL) systems have achieved impressive results on standard benchmarks mainly thanks to the contextualized representations provided by recent pretrained language models. However, such systems still require massive amounts of data – millions of labeled examples – to perform at their best, with training times that often exceed several days, especially when limited computational resources are available. In this paper, we look at how Named Entity Recognition (NER) can be exploited to narrow the gap between EL systems trained on high and low amounts of labeled data. More specifically, we show how and to what extent an EL system can benefit from NER to enhance its entity representations, improve candidate selection, select more effective negative samples and enforce hard and soft constraints on its output entities. We release our software – code and model checkpoints – at https://github.com/Babelscape/ner4el.

pdf bib
AMuSE-WSD: An All-in-one Multilingual System for Easy Word Sense Disambiguation
Riccardo Orlando | Simone Conia | Fabrizio Brignone | Francesco Cecconi | Roberto Navigli
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing: System Demonstrations

Over the past few years, Word Sense Disambiguation (WSD) has received renewed interest: recently proposed systems have shown the remarkable effectiveness of deep learning techniques in this task, especially when aided by modern pretrained language models. Unfortunately, such systems are still not available as ready-to-use end-to-end packages, making it difficult for researchers to take advantage of their performance. The only alternative for a user interested in applying WSD to downstream tasks is to rely on currently available end-to-end WSD systems, which, however, still rely on graph-based heuristics or non-neural machine learning algorithms. In this paper, we fill this gap and propose AMuSE-WSD, the first end-to-end system to offer high-quality sense information in 40 languages through a state-of-the-art neural model for WSD. We hope that AMuSE-WSD will provide a stepping stone for the integration of meaning into real-world applications and encourage further studies in lexical semantics. AMuSE-WSD is available online at http://nlp.uniroma1.it/amuse-wsd.

pdf bib
InVeRo-XL: Making Cross-Lingual Semantic Role Labeling Accessible with Intelligible Verbs and Roles
Simone Conia | Riccardo Orlando | Fabrizio Brignone | Francesco Cecconi | Roberto Navigli
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing: System Demonstrations

Notwithstanding the growing interest in cross-lingual techniques for Natural Language Processing, there has been a surprisingly small number of efforts aimed at the development of easy-to-use tools for cross-lingual Semantic Role Labeling. In this paper, we fill this gap and present InVeRo-XL, an off-the-shelf state-of-the-art system capable of annotating text with predicate sense and semantic role labels from 7 predicate-argument structure inventories in more than 40 languages. We hope that our system – with its easy-to-use RESTful API and Web interface – will become a valuable tool for the research community, encouraging the integration of sentence-level semantics into cross-lingual downstream tasks. InVeRo-XL is available online at http://nlp.uniroma1.it/invero.

2014

pdf bib
Representing Multilingual Data as Linked Data: the Case of BabelNet 2.0
Maud Ehrmann | Francesco Cecconi | Daniele Vannella | John Philip McCrae | Philipp Cimiano | Roberto Navigli
Proceedings of the Ninth International Conference on Language Resources and Evaluation (LREC'14)

Recent years have witnessed a surge in the amount of semantic information published on the Web. Indeed, the Web of Data, a subset of the Semantic Web, has been increasing steadily in both volume and variety, transforming the Web into a ‘global database’ in which resources are linked across sites. Linguistic fields – in a broad sense – have not been left behind, and we observe a similar trend with the growth of linguistic data collections on the so-called ‘Linguistic Linked Open Data (LLOD) cloud’. While both Semantic Web and Natural Language Processing communities can obviously take advantage of this growing and distributed linguistic knowledge base, they are today faced with a new challenge, i.e., that of facilitating multilingual access to the Web of data. In this paper we present the publication of BabelNet 2.0, a wide-coverage multilingual encyclopedic dictionary and ontology, as Linked Data. The conversion made use of lemon, a lexicon model for ontologies particularly well-suited for this enterprise. The result is an interlinked multilingual (lexical) resource which can not only be accessed on the LOD, but also be used to enrich existing datasets with linguistic information, or to support the process of mapping datasets across languages.