Frank Grimm
2021
BiQuAD: Towards QA based on deeper text understanding
Frank Grimm
|
Philipp Cimiano
Proceedings of *SEM 2021: The Tenth Joint Conference on Lexical and Computational Semantics
Recent question answering and machine reading benchmarks frequently reduce the task to one of pinpointing spans within a certain text passage that answers the given question. Typically, these systems are not required to actually understand the text on a deeper level that allows for more complex reasoning on the information contained. We introduce a new dataset called BiQuAD that requires deeper comprehension in order to answer questions in both extractive and deductive fashion. The dataset consist of 4,190 closed-domain texts and a total of 99,149 question-answer pairs. The texts are synthetically generated soccer match reports that verbalize the main events of each match. All texts are accompanied by a structured Datalog program that represents a (logical) model of its information. We show that state-of-the-art QA models do not perform well on the challenging long form contexts and reasoning requirements posed by the dataset. In particular, transformer based state-of-the-art models achieve F1-scores of only 39.0. We demonstrate how these synthetic datasets align structured knowledge with natural text and aid model introspection when approaching complex text understanding.
2020
Terme-à-LLOD: Simplifying the Conversion and Hosting of Terminological Resources as Linked Data
Maria Pia di Buono
|
Philipp Cimiano
|
Mohammad Fazleh Elahi
|
Frank Grimm
Proceedings of the 7th Workshop on Linked Data in Linguistics (LDL-2020)
In recent years, there has been increasing interest in publishing lexicographic and terminological resources as linked data. The benefit of using linked data technologies to publish terminologies is that terminologies can be linked to each other, thus creating a cloud of linked terminologies that cross domains, languages and that support advanced applications that do not work with single terminologies but can exploit multiple terminologies seamlessly. We present Terme-‘a-LLOD (TAL), a new paradigm for transforming and publishing terminologies as linked data which relies on a virtualization approach. The approach rests on a preconfigured virtual image of a server that can be downloaded and installed. We describe our approach to simplifying the transformation and hosting of terminological resources in the remainder of this paper. We provide a proof-of-concept for this paradigm showing how to apply it to the conversion of the well-known IATE terminology as well as to various smaller terminologies. Further, we discuss how the implementation of our paradigm can be integrated into existing NLP service infrastructures that rely on virtualization technology. While we apply this paradigm to the transformation and hosting of terminologies as linked data, the paradigm can be applied to any other resource format as well.
2018
SANTO: A Web-based Annotation Tool for Ontology-driven Slot Filling
Matthias Hartung
|
Hendrik ter Horst
|
Frank Grimm
|
Tim Diekmann
|
Roman Klinger
|
Philipp Cimiano
Proceedings of ACL 2018, System Demonstrations
Supervised machine learning algorithms require training data whose generation for complex relation extraction tasks tends to be difficult. Being optimized for relation extraction at sentence level, many annotation tools lack in facilitating the annotation of relational structures that are widely spread across the text. This leads to non-intuitive and cumbersome visualizations, making the annotation process unnecessarily time-consuming. We propose SANTO, an easy-to-use, domain-adaptive annotation tool specialized for complex slot filling tasks which may involve problems of cardinality and referential grounding. The web-based architecture enables fast and clearly structured annotation for multiple users in parallel. Relational structures are formulated as templates following the conceptualization of an underlying ontology. Further, import and export procedures of standard formats enable interoperability with external sources and tools.
Search
Fix data
Co-authors
- Philipp Cimiano 3
- Maria Pia Di Buono 1
- Tim Diekmann 1
- Mohammad Fazleh Elahi 1
- Matthias Hartung 1
- show all...