Frederike Zufall
2022
A Legal Approach to Hate Speech – Operationalizing the EU’s Legal Framework against the Expression of Hatred as an NLP Task
Frederike Zufall
|
Marius Hamacher
|
Katharina Kloppenborg
|
Torsten Zesch
Proceedings of the Natural Legal Language Processing Workshop 2022
We propose a ‘legal approach’ to hate speech detection by operationalization of the decision as to whether a post is subject to criminal law into an NLP task. Comparing existing regulatory regimes for hate speech, we base our investigation on the European Union’s framework as it provides a widely applicable legal minimum standard. Accurately deciding whether a post is punishable or not usually requires legal education. We show that, by breaking the legal assessment down into a series of simpler sub-decisions, even laypersons can annotate consistently. Based on a newly annotated dataset, our experiments show that directly learning an automated model of punishable content is challenging. However, learning the two sub-tasks of ‘target group’ and ‘targeting conduct’ instead of a holistic, end-to-end approach to the legal assessment yields better results. Overall, our method also provides decisions that are more transparent than those of end-to-end models, which is a crucial point in legal decision-making.
2019
From legal to technical concept: Towards an automated classification of German political Twitter postings as criminal offenses
Frederike Zufall
|
Tobias Horsmann
|
Torsten Zesch
Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)
Advances in the automated detection of offensive Internet postings make this mechanism very attractive to social media companies, who are increasingly under pressure to monitor and action activity on their sites. However, these advances also have important implications as a threat to the fundamental right of free expression. In this article, we analyze which Twitter posts could actually be deemed offenses under German criminal law. German law follows the deductive method of the Roman law tradition based on abstract rules as opposed to the inductive reasoning in Anglo-American common law systems. This allows us to show how legal conclusions can be reached and implemented without relying on existing court decisions. We present a data annotation schema, consisting of a series of binary decisions, for determining whether a specific post would constitute a criminal offense. This schema serves as a step towards an inexpensive creation of a sufficient amount of data for an automated classification. We find that the majority of posts deemed offensive actually do not constitute a criminal offense and still contribute to public discourse. Furthermore, laymen can provide sufficiently reliable data to an expert reference but are, for instance, more lenient in the interpretation of what constitutes a disparaging statement.