Fuming You
2024
Text-to-Song: Towards Controllable Music Generation Incorporating Vocal and Accompaniment
Zhiqing Hong
|
Rongjie Huang
|
Xize Cheng
|
Yongqi Wang
|
Ruiqi Li
|
Fuming You
|
Zhou Zhao
|
Zhimeng Zhang
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
A song is a combination of singing voice and accompaniment. However, existing works focus on singing voice synthesis and music generation independently. Little attention was paid to exploring song synthesis. In this work, we propose a novel task called Text-to-Song synthesis which incorporates both vocal and accompaniment generation. We develop Melodist, a two-stage text-to-song method that consists of singing voice synthesis (SVS) and vocal-to-accompaniment (V2A) synthesis. Melodist leverages tri-tower contrastive pretraining to learn more effective text representation for controllable V2A synthesis. A Chinese song dataset mined from a music website is built to alleviate data scarcity for our research. The evaluation results on our dataset demonstrate that Melodist can synthesize songs with comparable quality and style consistency. Audio samples can be found in https://text2songMelodist.github.io/Sample/.
Prompt-Singer: Controllable Singing-Voice-Synthesis with Natural Language Prompt
Yongqi Wang
|
Ruofan Hu
|
Rongjie Huang
|
Zhiqing Hong
|
Ruiqi Li
|
Wenrui Liu
|
Fuming You
|
Tao Jin
|
Zhou Zhao
Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)
Recent singing-voice-synthesis (SVS) methods have achieved remarkable audio quality and naturalness, yet they lack the capability to control the style attributes of the synthesized singing explicitly. We propose Prompt-Singer, the first SVS method that enables attribute controlling on singer gender, vocal range and volume with natural language. We adopt a model architecture based on a decoder-only transformer with a multi-scale hierarchy, and design a range-melody decoupled pitch representation that enables text-conditioned vocal range control while keeping melodic accuracy. Furthermore, we explore various experiment settings, including different types of text representations, text encoder fine-tuning, and introducing speech data to alleviate data scarcity, aiming to facilitate further research. Experiments show that our model achieves favorable controlling ability and audio quality. Audio samples are available at http://prompt-singer.github.io .