Furkan Şahinuç

Also published as: Furkan Sahinuc


2024

pdf bib
Efficient Performance Tracking: Leveraging Large Language Models for Automated Construction of Scientific Leaderboards
Furkan Şahinuç | Thy Thy Tran | Yulia Grishina | Yufang Hou | Bei Chen | Iryna Gurevych
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing

Scientific leaderboards are standardized ranking systems that facilitate evaluating and comparing competitive methods. Typically, a leaderboard is defined by a task, dataset, and evaluation metric (TDM) triple, allowing objective performance assessment and fostering innovation through benchmarking. However, the exponential increase in publications has made it infeasible to construct and maintain these leaderboards manually. Automatic leaderboard construction has emerged as a solution to reduce manual labor. Existing datasets for this task are based on the community-contributed leaderboards without additional curation. Our analysis shows that a large portion of these leaderboards are incomplete, and some of them contain incorrect information. In this work, we present SciLead, a manually-curated Scientific Leaderboard dataset that overcomes the aforementioned problems. Building on this dataset, we propose three experimental settings that simulate real-world scenarios where TDM triples are fully defined, partially defined, or undefined during leaderboard construction. While previous research has only explored the first setting, the latter two are more representative of real-world applications. To address these diverse settings, we develop a comprehensive LLM-based framework for constructing leaderboards. Our experiments and analysis reveal that various LLMs often correctly identify TDM triples while struggling to extract result values from publications. We make our code and data publicly available.

pdf bib
Systematic Task Exploration with LLMs: A Study in Citation Text Generation
Furkan Şahinuç | Ilia Kuznetsov | Yufang Hou | Iryna Gurevych
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Large language models (LLMs) bring unprecedented flexibility in defining and executing complex, creative natural language generation (NLG) tasks. Yet, this flexibility brings new challenges, as it introduces new degrees of freedom in formulating the task inputs and instructions and in evaluating model performance. To facilitate the exploration of creative NLG tasks, we propose a three-component research framework that consists of systematic input manipulation, reference data, and output measurement. We use this framework to explore citation text generation – a popular scholarly NLP task that lacks consensus on the task definition and evaluation metric and has not yet been tackled within the LLM paradigm. Our results highlight the importance of systematically investigating both task instruction and input configuration when prompting LLMs, and reveal non-trivial relationships between different evaluation metrics used for citation text generation. Additional human generation and human evaluation experiments provide new qualitative insights into the task to guide future research in citation text generation. We make our code and data publicly available.

pdf bib
MiDe22: An Annotated Multi-Event Tweet Dataset for Misinformation Detection
Cagri Toraman | Oguzhan Ozcelik | Furkan Sahinuc | Fazli Can
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)

The rapid dissemination of misinformation through online social networks poses a pressing issue with harmful consequences jeopardizing human health, public safety, democracy, and the economy; therefore, urgent action is required to address this problem. In this study, we construct a new human-annotated dataset, called MiDe22, having 5,284 English and 5,064 Turkish tweets with their misinformation labels for several recent events between 2020 and 2022, including the Russia-Ukraine war, COVID-19 pandemic, and Refugees. The dataset includes user engagements with the tweets in terms of likes, replies, retweets, and quotes. We also provide a detailed data analysis with descriptive statistics and the experimental results of a benchmark evaluation for misinformation detection.

2022

pdf bib
Large-Scale Hate Speech Detection with Cross-Domain Transfer
Cagri Toraman | Furkan Şahinuç | Eyup Yilmaz
Proceedings of the Thirteenth Language Resources and Evaluation Conference

The performance of hate speech detection models relies on the datasets on which the models are trained. Existing datasets are mostly prepared with a limited number of instances or hate domains that define hate topics. This hinders large-scale analysis and transfer learning with respect to hate domains. In this study, we construct large-scale tweet datasets for hate speech detection in English and a low-resource language, Turkish, consisting of human-labeled 100k tweets per each. Our datasets are designed to have equal number of tweets distributed over five domains. The experimental results supported by statistical tests show that Transformer-based language models outperform conventional bag-of-words and neural models by at least 5% in English and 10% in Turkish for large-scale hate speech detection. The performance is also scalable to different training sizes, such that 98% of performance in English, and 97% in Turkish, are recovered when 20% of training instances are used. We further examine the generalization ability of cross-domain transfer among hate domains. We show that 96% of the performance of a target domain in average is recovered by other domains for English, and 92% for Turkish. Gender and religion are more successful to generalize to other domains, while sports fail most.