Fangkun Zhao


2025

pdf bib
Collab-Overcooked: Benchmarking and Evaluating Large Language Models as Collaborative Agents
Haochen Sun | Shuwen Zhang | Lujie Niu | Lei Ren | Hao Xu | Hao Fu | Fangkun Zhao | Caixia Yuan | Xiaojie Wang
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing

Large Language Models (LLMs) based agent systems have made great strides in real-world applications beyond traditional NLP tasks. This paper proposes a new LLM-based Multi-Agent System (LLM-MAS) benchmark, Collab-Overcooked, built on the popular Overcooked-AI game with more applicable and challenging tasks in interactive environments. Collab-Overcooked extends existing benchmarks in two novel ways. First, it provides a multi-agent framework supporting diverse tasks and objectives and encourages collaboration through natural language communication. Second, it introduces a spectrum of process-oriented evaluation metrics to assess the fine-grained collaboration capabilities of different LLM agents, a dimension often overlooked in prior work. We conduct extensive experiments with 13 popular LLMs and show that, while the LLMs exhibit a strong ability in goal interpretation, there are significant shortcomings in active collaboration and continuous adaptation, which are critical for efficiently fulfilling complex tasks. Notably, we highlight the strengths and weaknesses of LLM-MAS and provide insights for improving and evaluating LLM-MAS on a unified and open-source benchmark. The environments, 30 open-ended tasks, and the evaluation package are publicly available at https://github.com/YusaeMeow/Collab-Overcooked.

pdf bib
CoTD-PO: Chain-of-Thought Distillation with Preference Optimization
Lujie Niu | Haochen Sun | Fangkun Zhao | Sheng Chen | Zimeng Bai | Jiawei Zhang | Caixia Yuan | Xiaojie Wang
Findings of the Association for Computational Linguistics: EMNLP 2025

Chain-of-Thought (CoT) distillation has emerged as a promising paradigm to enhance the reasoning ability of small language models by imitating the reasoning and outputs of larger teacher models. However, existing approaches suffer from a critical limitation: a distribution mismatch between teacher-generated training trajectories and the student model’s own generative distribution. This mismatch leads to exposure bias during inference and often induces mode collapse or mode averaging, thereby degrading the student model’s generative diversity and robustness. To address these issues, we propose CoTD-PO (Chain-of-Thought Distillation with Preference Optimization), a reinforcement learning framework that shifts the training paradigm from passive imitation to active trajectory exploration. Instead of forcing the student to imitate exact teacher traces, our method enables the student to sample its own answer paths. To support training with non-open-source teacher models, we approximate the teacher’s output distribution through preference-based scoring. Furthermore, we adopt an offline iterative training procedure that enables stable and efficient optimization. Experiments on diverse open-ended generation tasks demonstrate that CoTD-PO significantly outperforms standard CoT distillation baselines, achieving higher output quality while mitigating mode collapse and preserving semantic diversity.