The automatic detection of temporal relations among events has been mainly investigated with encoder-only models such as RoBERTa. Large Language Models (LLM) have recently shown promising performance in temporal reasoning tasks such as temporal question answering. Nevertheless, recent studies have tested the LLMs’ performance in detecting temporal relations of closed-source models only, limiting the interpretability of those results. In this work, we investigate LLMs’ performance and decision process in the Temporal Relation Classification task. First, we assess the performance of seven open and closed-sourced LLMs experimenting with in-context learning and lightweight fine-tuning approaches. Results show that LLMs with in-context learning significantly underperform smaller encoder-only models based on RoBERTa. Then, we delve into the possible reasons for this gap by applying explainable methods. The outcome suggests a limitation of LLMs in this task due to their autoregressive nature, which causes them to focus only on the last part of the sequence. Additionally, we evaluate the word embeddings of these two models to better understand their pre-training differences. The code and the fine-tuned models can be found respectively on GitHub.
We study the limitations of Large Language Models (LLMs) for the task of response generation in human-machine dialogue. Several techniques have been proposed in the literature for different dialogue types (e.g., Open-Domain). However, the evaluations of these techniques have been limited in terms of base LLMs, dialogue types and evaluation metrics. In this work, we extensively analyze different LLM adaptation techniques when applied to different dialogue types. We have selected two base LLMs, Llama-2 and Mistral, and four dialogue types Open-Domain, Knowledge-Grounded, Task-Oriented, and Question Answering. We evaluate the performance of in-context learning and fine-tuning techniques across datasets selected for each dialogue type. We assess the impact of incorporating external knowledge to ground the generation in both scenarios of Retrieval-Augmented Generation (RAG) and gold knowledge. We adopt consistent evaluation and explainability criteria for automatic metrics and human evaluation protocols. Our analysis shows that there is no universal best-technique for adapting large language models as the efficacy of each technique depends on both the base LLM and the specific type of dialogue. Last but not least, the assessment of the best adaptation technique should include human evaluation to avoid false expectations and outcomes derived from automatic metrics.
The valence analysis of speakers’ utterances or written posts helps to understand the activation and variations of the emotional state throughout the conversation. More recently, the concept of Emotion Carriers (EC) has been introduced to explain the emotion felt by the speaker and its manifestations. In this work, we investigate the natural inter-dependency of valence and ECs via a multi-task learning approach. We experiment with Pre-trained Language Models (PLM) for single-task, two-step, and joint settings for the valence and EC prediction tasks. We compare and evaluate the performance of generative (GPT-2) and discriminative (BERT) architectures in each setting. We observed that providing the ground truth label of one task improves the prediction performance of the models in the other task. We further observed that the discriminative model achieves the best trade-off of valence and EC prediction tasks in the joint prediction setting. As a result, we attain a single model that performs both tasks, thus, saving computation resources at training and inference times.
Narratives include a rich source of events unfolding over time and context. Automatic understanding of these events provides a summarised comprehension of the narrative for further computation (such as reasoning). In this paper, we study the Information Status (IS) of the events and propose a novel challenging task: the automatic identification of new events in a narrative. We define an event as a triplet of subject, predicate, and object. The event is categorized as new with respect to the discourse context and whether it can be inferred through commonsense reasoning. We annotated a publicly available corpus of narratives with the new events at sentence level using human annotators. We present the annotation protocol and study the quality of the annotation and the difficulty of the task. We publish the annotated dataset, annotation materials, and machine learning baseline models for the task of new event extraction for narrative understanding.
Human Evaluation (HE) of automatically generated responses is necessary for the advancement of human-machine dialogue research. Current automatic evaluation measures are poor surrogates, at best. There are no agreed-upon HE protocols and it is difficult to develop them. As a result, researchers either perform non-replicable, non-transparent and inconsistent procedures or, worse, limit themselves to automated metrics. We propose to standardize the human evaluation of response generation models by publicly sharing a detailed protocol. The proposal includes the task design, annotators recruitment, task execution, and annotation reporting. Such protocol and process can be used as-is, as-a-whole, in-part, or modified and extended by the research community. We validate the protocol by evaluating two conversationally fine-tuned state-of-the-art models (GPT-2 and T5) for the complex task of personalized response generation. We invite the community to use this protocol - or its future community amended versions - as a transparent, replicable, and comparable approach to HE of generated responses.
Sentiment analysis is one of the most widely studied tasks in natural language processing. While BERT-based models have achieved state-of-the-art results in this task, little attention has been given to its performance variability across class labels, multi-source and multi-domain corpora. In this paper, we present an improved state-of-the-art and comparatively evaluate BERT-based models for sentiment analysis on Italian corpora. The proposed model is evaluated over eight sentiment analysis corpora from different domains (social media, finance, e-commerce, health, travel) and sources (Twitter, YouTube, Facebook, Amazon, Tripadvisor, Opera and Personal Healthcare Agent) on the prediction of positive, negative and neutral classes. Our findings suggest that BERT-based models are confident in predicting positive and negative examples but not as much with neutral examples. We release the sentiment analysis model as well as a newly financial domain sentiment corpus.
Personal Narrative (PN) is the recollection of individuals’ life experiences, events, and thoughts along with the associated emotions in the form of a story. Compared to other genres such as social media texts or microblogs, where people write about experienced events or products, the spoken PNs are complex to analyze and understand. They are usually long and unstructured, involving multiple and related events, characters as well as thoughts and emotions associated with events, objects, and persons. In spoken PNs, emotions are conveyed by changing the speech signal characteristics as well as the lexical content of the narrative. In this work, we annotate a corpus of spoken personal narratives, with the emotion valence using discrete values. The PNs are segmented into speech segments, and the annotators annotate them in the discourse context, with values on a 5-point bipolar scale ranging from -2 to +2 (0 for neutral). In this way, we capture the unfolding of the PNs events and changes in the emotional state of the narrator. We perform an in-depth analysis of the inter-annotator agreement, the relation between the label distribution w.r.t. the stimulus (positive/negative) used for the elicitation of the narrative, and compare the segment-level annotations to a baseline continuous annotation. We find that the neutral score plays an important role in the agreement. We observe that it is easy to differentiate the positive from the negative valence while the confusion with the neutral label is high. Keywords: Personal Narratives, Emotion Annotation, Segment Level Annotation
Deep Neural Networks (DNN) models have achieved acceptable performance in sentiment prediction of written text. However, the output of these machine learning (ML) models cannot be natively interpreted. In this paper, we study how the sentiment polarity predictions by DNNs can be explained and compare them to humans’ explanations. We crowdsource a corpus of Personal Narratives and ask human judges to annotate them with polarity and select the corresponding token chunks - the Emotion Carriers (EC) - that convey narrators’ emotions in the text. The interpretations of ML neural models are carried out through Integrated Gradients method and we compare them with human annotators’ interpretations. The results of our comparative analysis indicate that while the ML model mostly focuses on the explicit appearance of emotions-laden words (e.g. happy, frustrated), the human annotator predominantly focuses the attention on the manifestation of emotions through ECs that denote events, persons, and objects which activate narrator’s emotional state.