Gaël Varoquaux

Also published as: Gael Varoquaux


2024

pdf bib
Learning High-Quality and General-Purpose Phrase Representations
Lihu Chen | Gael Varoquaux | Fabian Suchanek
Findings of the Association for Computational Linguistics: EACL 2024

Phrase representations play an important role in data science and natural language processing, benefiting various tasks like Entity Alignment, Record Linkage, Fuzzy Joins, and Paraphrase Classification.The current state-of-the-art method involves fine-tuning pre-trained language models for phrasal embeddings using contrastive learning. However, we have identified areas for improvement. First, these pre-trained models tend to be unnecessarily complex and require to be pre-trained on a corpus with context sentences.Second, leveraging the phrase type and morphology gives phrase representations that are both more precise and more flexible.We propose an improved framework to learn phrase representations in a context-free fashion.The framework employs phrase type classification as an auxiliary task and incorporates character-level information more effectively into the phrase representation.Furthermore, we design three granularities of data augmentation to increase the diversity of training samples.Our experiments across a wide range of tasks reveal that our approach generates superior phrase embeddings compared to previous methods while requiring a smaller model size.

pdf bib
Reconfidencing LLMs from the Grouping Loss Perspective
Lihu Chen | Alexandre Perez-Lebel | Fabian M. Suchanek | Gaël Varoquaux
Findings of the Association for Computational Linguistics: EMNLP 2024

Large Language Models (LLMs), such as GPT and LLaMA, are susceptible to generating hallucinated answers in a confident tone. While previous efforts to elicit and calibrate confidence scores have shown some success, they often overlook biases towards certain groups, such as specific nationalities. Existing calibration methods typically focus on average performance, failing to address this disparity. In our study, we demonstrate that the concept of grouping loss is an effective metric for understanding and correcting the heterogeneity in confidence levels. We introduce a novel evaluation dataset, derived from a knowledge base, specifically designed to assess the confidence scores of LLM responses across different groups. Our experimental results highlight significant variations in confidence, which are accurately captured by grouping loss. To tackle this issue, we propose a new method to calibrate the confidence scores of LLMs by considering different groups, a process we term reconfidencing. Our findings indicate that this approach effectively mitigates biases against minority groups, contributing to the development of fairer LLMs.

2023

pdf bib
GLADIS: A General and Large Acronym Disambiguation Benchmark
Lihu Chen | Gael Varoquaux | Fabian M. Suchanek
Proceedings of the 17th Conference of the European Chapter of the Association for Computational Linguistics

Acronym Disambiguation (AD) is crucial for natural language understanding on various sources, including biomedical reports, scientific papers, and search engine queries. However, existing acronym disambiguationbenchmarks and tools are limited to specific domains, and the size of prior benchmarks is rather small. To accelerate the research on acronym disambiguation, we construct a new benchmark with three components: (1) a much larger acronym dictionary with 1.5M acronyms and 6.4M long forms; (2) a pre-training corpus with 160 million sentences;(3) three datasets that cover thegeneral, scientific, and biomedical domains. We then pre-train a language model, AcroBERT, on our constructed corpus for general acronym disambiguation, and show the challenges and values of our new benchmark.

pdf bib
The Locality and Symmetry of Positional Encodings
Lihu Chen | Gael Varoquaux | Fabian Suchanek
Findings of the Association for Computational Linguistics: EMNLP 2023

Positional Encodings (PEs) are used to inject word-order information into transformer-based language models. While they can significantly enhance the quality of sentence representations, their specific contribution to language models is not fully understood, especially given recent findings that various positional encodings are insensitive to word order. In this work, we conduct a systematic study of positional encodings in Bidirectional Masked Language Models (BERT-style) , which complements existing work in three aspects: (1) We uncover the core function of PEs by identifying two common properties, Locality and Symmetry; (2) We show that the two properties are closely correlated with the performances of downstream tasks; (3) We quantify the weakness of current PEs by introducing two new probing tasks, on which current PEs perform poorly. We believe that these results are the basis for developing better PEs for transformer-based language models.

2022

pdf bib
Imputing Out-of-Vocabulary Embeddings with LOVE Makes LanguageModels Robust with Little Cost
Lihu Chen | Gael Varoquaux | Fabian Suchanek
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

State-of-the-art NLP systems represent inputs with word embeddings, but these are brittle when faced with Out-of-Vocabulary (OOV) words. To address this issue, we follow the principle of mimick-like models to generate vectors for unseen words, by learning the behavior of pre-trained embeddings using only the surface form of words. We present a simple contrastive learning framework, LOVE, which extends the word representation of an existing pre-trained language model (such as BERT) and makes it robust to OOV with few additional parameters. Extensive evaluations demonstrate that our lightweight model achieves similar or even better performances than prior competitors, both on original datasets and on corrupted variants. Moreover, it can be used in a plug-and-play fashion with FastText and BERT, where it significantly improves their robustness.