Gaetano Rossiello


2023

pdf bib
Retrieval-Based Transformer for Table Augmentation
Michael Glass | Xueqing Wu | Ankita Rajaram Naik | Gaetano Rossiello | Alfio Gliozzo
Findings of the Association for Computational Linguistics: ACL 2023

Data preparation, also called data wrangling, is considered one of the most expensive and time-consuming steps when performing analytics or building machine learning models. Preparing data typically involves collecting and merging data from complex heterogeneous, and often large-scale data sources, such as data lakes. In this paper, we introduce a novel approach toward automatic data wrangling in an attempt to alleviate the effort of end-users, e.g. data analysts, in structuring dynamic views from data lakes in the form of tabular data. Given a corpus of tables, we propose a retrieval augmented transformer model that is self-trained for the table augmentation tasks of row/column population and data imputation. Our self-learning strategy consists in randomly ablating tables from the corpus and training the retrieval-based model with the objective of reconstructing the partial tables given as input with the original values or headers. We adopt this strategy to first train the dense neural retrieval model encoding portions of tables to vectors, and then the end-to-end model trained to perform table augmentation tasks. We test on EntiTables, the standard benchmark for table augmentation, as well as introduce a new benchmark to advance further research: WebTables. Our model consistently and substantially outperforms both supervised statistical methods and the current state-of-the-art transformer-based models.

2022

pdf bib
KGI: An Integrated Framework for Knowledge Intensive Language Tasks
Md Faisal Mahbub Chowdhury | Michael Glass | Gaetano Rossiello | Alfio Gliozzo | Nandana Mihindukulasooriya
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing: System Demonstrations

In this paper, we present a system to showcase the capabilities of the latest state-of-the-art retrieval augmented generation models trained on knowledge-intensive language tasks, such as slot filling, open domain question answering, dialogue, and fact-checking. Moreover, given a user query, we show how the output from these different models can be combined to cross-examine the outputs of each other. Particularly, we show how accuracy in dialogue can be improved using the question answering model. We are also releasing all models used in the demo as a contribution of this paper. A short video demonstrating the system is available at https://ibm.box.com/v/emnlp2022-demos.

pdf bib
A Two-Stage Approach towards Generalization in Knowledge Base Question Answering
Srinivas Ravishankar | Dung Thai | Ibrahim Abdelaziz | Nandana Mihindukulasooriya | Tahira Naseem | Pavan Kapanipathi | Gaetano Rossiello | Achille Fokoue
Findings of the Association for Computational Linguistics: EMNLP 2022

Most existing approaches for Knowledge Base Question Answering (KBQA) focus on a specific underlying knowledge base either because of inherent assumptions in the approach, or because evaluating it on a different knowledge base requires non-trivial changes. However, many popular knowledge bases share similarities in their underlying schemas that can be leveraged to facilitate generalization across knowledge bases. To achieve this generalization, we introduce a KBQA framework based on a 2-stage architecture that explicitly separates semantic parsing from the knowledge base interaction, facilitating transfer learning across datasets and knowledge graphs. We show that pretraining on datasets with a different underlying knowledge base can nevertheless provide significant performance gains and reduce sample complexity. Our approach achieves comparable or state-of-the-art performance for LC-QuAD (DBpedia), WebQSP (Freebase), SimpleQuestions (Wikidata) and MetaQA (Wikimovies-KG).

pdf bib
Re2G: Retrieve, Rerank, Generate
Michael Glass | Gaetano Rossiello | Md Faisal Mahbub Chowdhury | Ankita Naik | Pengshan Cai | Alfio Gliozzo
Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

As demonstrated by GPT-3 and T5, transformers grow in capability as parameter spaces become larger and larger. However, for tasks that require a large amount of knowledge, non-parametric memory allows models to grow dramatically with a sub-linear increase in computational cost and GPU memory requirements. Recent models such as RAG and REALM have introduced retrieval into conditional generation. These models incorporate neural initial retrieval from a corpus of passages. We build on this line of research, proposing Re2G, which combines both neural initial retrieval and reranking into a BART-based sequence-to-sequence generation. Our reranking approach also permits merging retrieval results from sources with incomparable scores, enabling an ensemble of BM25 and neural initial retrieval. To train our system end-to-end, we introduce a novel variation of knowledge distillation to train the initial retrieval, reranker and generation using only ground truth on the target sequence output. We find large gains in four diverse tasks: zero-shot slot filling, question answering, fact checking and dialog, with relative gains of 9% to 34% over the previous state-of-the-art on the KILT leaderboard. We make our code available as open source.

2021

pdf bib
Robust Retrieval Augmented Generation for Zero-shot Slot Filling
Michael Glass | Gaetano Rossiello | Md Faisal Mahbub Chowdhury | Alfio Gliozzo
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

Automatically inducing high quality knowledge graphs from a given collection of documents still remains a challenging problem in AI. One way to make headway for this problem is through advancements in a related task known as slot filling. In this task, given an entity query in form of [Entity, Slot, ?], a system is asked to ‘fill’ the slot by generating or extracting the missing value exploiting evidence extracted from relevant passage(s) in the given document collection. The recent works in the field try to solve this task in an end-to-end fashion using retrieval-based language models. In this paper, we present a novel approach to zero-shot slot filling that extends dense passage retrieval with hard negatives and robust training procedures for retrieval augmented generation models. Our model reports large improvements on both T-REx and zsRE slot filling datasets, improving both passage retrieval and slot value generation, and ranking at the top-1 position in the KILT leaderboard. Moreover, we demonstrate the robustness of our system showing its domain adaptation capability on a new variant of the TACRED dataset for slot filling, through a combination of zero/few-shot learning. We release the source code and pre-trained models.

pdf bib
Open Knowledge Graphs Canonicalization using Variational Autoencoders
Sarthak Dash | Gaetano Rossiello | Nandana Mihindukulasooriya | Sugato Bagchi | Alfio Gliozzo
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

Noun phrases and Relation phrases in open knowledge graphs are not canonicalized, leading to an explosion of redundant and ambiguous subject-relation-object triples. Existing approaches to solve this problem take a two-step approach. First, they generate embedding representations for both noun and relation phrases, then a clustering algorithm is used to group them using the embeddings as features. In this work, we propose Canonicalizing Using Variational AutoEncoders and Side Information (CUVA), a joint model to learn both embeddings and cluster assignments in an end-to-end approach, which leads to a better vector representation for the noun and relation phrases. Our evaluation over multiple benchmarks shows that CUVA outperforms the existing state-of-the-art approaches. Moreover, we introduce CanonicNell, a novel dataset to evaluate entity canonicalization systems.

pdf bib
Leveraging Abstract Meaning Representation for Knowledge Base Question Answering
Pavan Kapanipathi | Ibrahim Abdelaziz | Srinivas Ravishankar | Salim Roukos | Alexander Gray | Ramón Fernandez Astudillo | Maria Chang | Cristina Cornelio | Saswati Dana | Achille Fokoue | Dinesh Garg | Alfio Gliozzo | Sairam Gurajada | Hima Karanam | Naweed Khan | Dinesh Khandelwal | Young-Suk Lee | Yunyao Li | Francois Luus | Ndivhuwo Makondo | Nandana Mihindukulasooriya | Tahira Naseem | Sumit Neelam | Lucian Popa | Revanth Gangi Reddy | Ryan Riegel | Gaetano Rossiello | Udit Sharma | G P Shrivatsa Bhargav | Mo Yu
Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021

2019

pdf bib
Learning Relational Representations by Analogy using Hierarchical Siamese Networks
Gaetano Rossiello | Alfio Gliozzo | Robert Farrell | Nicolas Fauceglia | Michael Glass
Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)

We address relation extraction as an analogy problem by proposing a novel approach to learn representations of relations expressed by their textual mentions. In our assumption, if two pairs of entities belong to the same relation, then those two pairs are analogous. Following this idea, we collect a large set of analogous pairs by matching triples in knowledge bases with web-scale corpora through distant supervision. We leverage this dataset to train a hierarchical siamese network in order to learn entity-entity embeddings which encode relational information through the different linguistic paraphrasing expressing the same relation. We evaluate our model in a one-shot learning task by showing a promising generalization capability in order to classify unseen relation types, which makes this approach suitable to perform automatic knowledge base population with minimal supervision. Moreover, the model can be used to generate pre-trained embeddings which provide a valuable signal when integrated into an existing neural-based model by outperforming the state-of-the-art methods on a downstream relation extraction task.

2017

pdf bib
Centroid-based Text Summarization through Compositionality of Word Embeddings
Gaetano Rossiello | Pierpaolo Basile | Giovanni Semeraro
Proceedings of the MultiLing 2017 Workshop on Summarization and Summary Evaluation Across Source Types and Genres

The textual similarity is a crucial aspect for many extractive text summarization methods. A bag-of-words representation does not allow to grasp the semantic relationships between concepts when comparing strongly related sentences with no words in common. To overcome this issue, in this paper we propose a centroid-based method for text summarization that exploits the compositional capabilities of word embeddings. The evaluations on multi-document and multilingual datasets prove the effectiveness of the continuous vector representation of words compared to the bag-of-words model. Despite its simplicity, our method achieves good performance even in comparison to more complex deep learning models. Our method is unsupervised and it can be adopted in other summarization tasks.