Gal Patel
2023
MuLER: Detailed and Scalable Reference-based Evaluation
Taelin Karidi
|
Leshem Choshen
|
Gal Patel
|
Omri Abend
Proceedings of the 27th Conference on Computational Natural Language Learning (CoNLL)
We propose a novel methodology (namely, MuLER) that transforms any reference-based evaluation metric for text generation, such as machine translation (MT) into a fine-grained analysis tool. Given a system and a metric, MuLER quantifies how much the chosen metric penalizes specific error types (e.g., errors in translating names of locations). MuLER thus enables a detailed error analysis which can lead to targeted improvement efforts for specific phenomena. We perform experiments in both synthetic and naturalistic settings to support MuLER’s validity and showcase its usability in MT evaluation, and other tasks, such as summarization. Analyzing all submissions to WMT in 2014-2020, we find consistent trends. For example, nouns and verbs are among the most frequent POS tags. However, they are among the hardest to translate. Performance on most POS tags improves with overall system performance, but a few are not thus correlated (their identity changes from language to language). Preliminary experiments with summarization reveal similar trends.
2022
On Neurons Invariant to Sentence Structural Changes in Neural Machine Translation
Gal Patel
|
Leshem Choshen
|
Omri Abend
Proceedings of the 26th Conference on Computational Natural Language Learning (CoNLL)
We present a methodology that explores how sentence structure is reflected in neural representations of machine translation systems. We demonstrate our model-agnostic approach with the Transformer English-German translation model. We analyze neuron-level correlation of activations between paraphrases while discussing the methodology challenges and the need for confound analysis to isolate the effects of shallow cues. We find that similarity between activation patterns can be mostly accounted for by similarity in word choice and sentence length. Following that, we manipulate neuron activations to control the syntactic form of the output. We show this intervention to be somewhat successful, indicating that deep models capture sentence-structure distinctions, despite finding no such indication at the neuron level. To conduct our experiments, we develop a semi-automatic method to generate meaning-preserving minimal pair paraphrases (active-passive voice and adverbial clause-noun phrase) and compile a corpus of such pairs.