Gauri Kambhatla
2024
Promoting Constructive Deliberation: Reframing for Receptiveness
Gauri Kambhatla
|
Matthew Lease
|
Ashwin Rajadesingan
Findings of the Association for Computational Linguistics: EMNLP 2024
To promote constructive discussion of controversial topics online, we propose automatic reframing of disagreeing responses to signal receptiveness to a preceding comment. Drawing on research from psychology, communications, and linguistics, we identify six strategies for reframing. We automatically reframe replies to comments according to each strategy, using a Reddit dataset. Through human-centered experiments, we find that the replies generated with our framework are perceived to be significantly more receptive than the original replies and a generic receptiveness baseline. We illustrate how transforming receptiveness, a particular social science construct, into a computational framework, can make LLM generations more aligned with human perceptions. We analyze and discuss the implications of our results, and highlight how a tool based on our framework might be used for more teachable and creative content moderation.
2023
Quantifying Train-Evaluation Overlap with Nearest Neighbors
Gauri Kambhatla
|
Thuy Nguyen
|
Eunsol Choi
Findings of the Association for Computational Linguistics: ACL 2023
Characterizing benchmark datasets is crucial to interpreting model performance. In this work, we study train-evaluation overlap as a measure of an individual dataset’s adequacy to evaluate model generalization over a wide range of datasets. We quantify the overlap with a simple novel metric based on a nearest neighbors approach between the training and evaluation sets. We identify nearest training examples for each evaluation example by mapping instances with generic and task-specific embedding methods. Our study on eleven classification and extractive QA tasks reveals a wide range of train-evaluation overlap, and we show that the data collection method of the dataset and the difficulty of the task may play a role in the amount of overlap. Lastly, we use our nearest neighbor analysis to identify challenging or potentially mislabeled examples. Our analysis quantifies train-evaluation overlap, providing insights for constructing datasets to study generalization.