Geert Heyman


2019

pdf bib
Learning Unsupervised Multilingual Word Embeddings with Incremental Multilingual Hubs
Geert Heyman | Bregt Verreet | Ivan Vulić | Marie-Francine Moens
Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)

Recent research has discovered that a shared bilingual word embedding space can be induced by projecting monolingual word embedding spaces from two languages using a self-learning paradigm without any bilingual supervision. However, it has also been shown that for distant language pairs such fully unsupervised self-learning methods are unstable and often get stuck in poor local optima due to reduced isomorphism between starting monolingual spaces. In this work, we propose a new robust framework for learning unsupervised multilingual word embeddings that mitigates the instability issues. We learn a shared multilingual embedding space for a variable number of languages by incrementally adding new languages one by one to the current multilingual space. Through the gradual language addition the method can leverage the interdependencies between the new language and all other languages in the current multilingual space. We find that it is beneficial to project more distant languages later in the iterative process. Our fully unsupervised multilingual embedding spaces yield results that are on par with the state-of-the-art methods in the bilingual lexicon induction (BLI) task, and simultaneously obtain state-of-the-art scores on two downstream tasks: multilingual document classification and multilingual dependency parsing, outperforming even supervised baselines. This finding also accentuates the need to establish evaluation protocols for cross-lingual word embeddings beyond the omnipresent intrinsic BLI task in future work.

2018

pdf bib
Smart Computer-Aided Translation Environment (SCATE): Highlights
Vincent Vandeghinste | Tom Vanallemeersch | Bram Bulté | Liesbeth Augustinus | Frank Van Eynde | Joris Pelemans | Lyan Verwimp | Patrick Wambacq | Geert Heyman | Marie-Francine Moens | Iulianna van der Lek-Ciudin | Frieda Steurs | Ayla Rigouts Terryn | Els Lefever | Arda Tezcan | Lieve Macken | Sven Coppers | Jens Brulmans | Jan Van Den Bergh | Kris Luyten | Karin Coninx
Proceedings of the 21st Annual Conference of the European Association for Machine Translation

We present the highlights of the now finished 4-year SCATE project. It was completed in February 2018 and funded by the Flemish Government IWT-SBO, project No. 130041.1

pdf bib
A Flexible and Easy-to-use Semantic Role Labeling Framework for Different Languages
Quynh Ngoc Thi Do | Artuur Leeuwenberg | Geert Heyman | Marie-Francine Moens
Proceedings of the 27th International Conference on Computational Linguistics: System Demonstrations

This paper presents a flexible and open source framework for deep semantic role labeling. We aim at facilitating easy exploration of model structures for multiple languages with different characteristics. It provides flexibility in its model construction in terms of word representation, sequence representation, output modeling, and inference styles and comes with clear output visualization. The framework is available under the Apache 2.0 license.

2017

pdf bib
Bilingual Lexicon Induction by Learning to Combine Word-Level and Character-Level Representations
Geert Heyman | Ivan Vulić | Marie-Francine Moens
Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics: Volume 1, Long Papers

We study the problem of bilingual lexicon induction (BLI) in a setting where some translation resources are available, but unknown translations are sought for certain, possibly domain-specific terminology. We frame BLI as a classification problem for which we design a neural network based classification architecture composed of recurrent long short-term memory and deep feed forward networks. The results show that word- and character-level representations each improve state-of-the-art results for BLI, and the best results are obtained by exploiting the synergy between these word- and character-level representations in the classification model.

2015

pdf bib
Smart Computer Aided Translation Environment
Vincent Vandeghinste | Tom Vanallemeersch | Frank Van Eynde | Geert Heyman | Sien Moens | Joris Pelemans | Patrick Wambacq | Iulianna Van der Lek - Ciudin | Arda Tezcan | Lieve Macken | Véronique Hoste | Eva Geurts | Mieke Haesen
Proceedings of the 18th Annual Conference of the European Association for Machine Translation

pdf bib
Smart Computer Aided Translation Environment - SCATE
Vincent Vandeghinste | Tom Vanallemeersch | Frank Van Eynde | Geert Heyman | Sien Moens | Joris Pelemans | Patrick Wambacq | Iulianna Van der Lek - Ciudin | Arda Tezcan | Lieve Macken | Véronique Hoste | Eva Geurts | Mieke Haesen
Proceedings of the 18th Annual Conference of the European Association for Machine Translation