Gerard Yeo
2024
Beyond Text: Leveraging Multi-Task Learning and Cognitive Appraisal Theory for Post-Purchase Intention Analysis
Gerard Yeo
|
Shaz Furniturewala
|
Kokil Jaidka
Findings of the Association for Computational Linguistics: ACL 2024
Supervised machine-learning models for predicting user behavior offer a challenging classification problem with lower average prediction performance scores than other text classification tasks. This study evaluates multi-task learning frameworks grounded in Cognitive Appraisal Theory to predict user behavior as a function of users’ self-expression and psychological attributes. Our experiments show that users’ language and traits improve predictions above and beyond models predicting only from text. Our findings highlight the importance of integrating psychological constructs into NLP to enhance the understanding and prediction of user actions. We close with a discussion of the implications for future applications of large language models for computational psychology.
2023
The PEACE-Reviews dataset: Modeling Cognitive Appraisals in Emotion Text Analysis
Gerard Yeo
|
Kokil Jaidka
Findings of the Association for Computational Linguistics: EMNLP 2023
Cognitive appraisal plays a pivotal role in deciphering emotions. Recent studies have delved into its significance, yet the interplay between various forms of cognitive appraisal and specific emotions, such as joy and anger, remains an area of exploration in consumption contexts. Our research introduces the PEACE-Reviews dataset, a unique compilation of annotated autobiographical accounts where individuals detail their emotional and appraisal experiences during interactions with personally significant products or services. Focusing on the inherent variability in consumer experiences, this dataset offers an in-depth analysis of participants’ psychological traits, their evaluative feedback on purchases, and the resultant emotions. Notably, the PEACE-Reviews dataset encompasses emotion, cognition, individual traits, and demographic data. We also introduce preliminary models that predict certain features based on the autobiographical narratives.