A word frequency list is a list of unique words in a language along with their frequency count. It is generally sorted by frequency. Such a list is essential for many NLP tasks, including building language models, POS taggers, spelling checkers, word separation guides, etc., in addition to assisting language learners. Such lists are available for many languages, but a large-scale word list is still not available for Sinhala. We have developed a comprehensive list of words, together with their frequency and part-of-speech (POS), from a large textbase. Unlike many other such lists, our list includes a large number of low-frequency words (many of which are erroneous), which enables the analysis of such words, including the frequencies of errors. In addition to the main list, we have also prepared a list of linguistically verified words. The word frequency list and the verified word list are the largest collections of words lists that are available for the Sinhala language.
This paper describes an ongoing development of a grammar error checker for the Tamil language using a state-of-the-art deep neural-based approach. This proposed checker capture a vital type of grammar error called subject-predicate agreement errors. In this case, we specifically target the agreement error that occurs between nominal subject and verbal predicates. We also created the first-ever grammar error annotated corpus for Tamil. In addition, we experimented with different multi-lingual pre-trained language models to capture syntactic information and found that IndicBERT gives better performance for our tasks. We implemented this grammar checker as a multi-class classification on top of the IndicBERT pre-trained model, which we fine-tuned using our annotated data. This baseline model gives an F1 Score of 73.4. We are now in the process of improving this proposed system with the use of a dependency parser.
This paper describes how we developed a neural-based dependency parser, namely ThamizhiUDp, which provides a complete pipeline for the dependency parsing of the Tamil language text using Universal Dependency formalism. We have considered the phases of the dependency parsing pipeline and identified tools and resources in each of these phases to improve the accuracy and to tackle data scarcity. ThamizhiUDp uses Stanza for tokenisation and lemmatisation, ThamizhiPOSt and ThamizhiMorph for generating Part of Speech (POS) and Morphological annotations, and uuparser with multilingual training for dependency parsing. ThamizhiPOSt is our POS tagger, which is based on the Stanza, trained with Amrita POS-tagged corpus. It is the current state-of-the-art in Tamil POS tagging with an F1 score of 93.27. Our morphological analyzer, ThamizhiMorph is a rule-based system with a very good coverage of Tamil. Our dependency parser ThamizhiUDp was trained using multilingual data. It shows a Labelled Assigned Score (LAS) of 62.39, 4 points higher than the current best achieved for Tamil dependency parsing. Therefore, we show that breaking up the dependency parsing pipeline to accommodate existing tools and resources is a viable approach for low-resource languages.
This paper describes a new and larger coverage Finite-State Morphological Analyser (FSM) and Generator for the Dravidian language Tamil. The FSM has been developed in the context of computational grammar engineering, adhering to the standards of the ParGram effort. Tamil is a morphologically rich language and the interaction between linguistic analysis and formal implementation is complex, resulting in a challenging task. In order to allow the development of the FSM to focus more on the linguistic analysis and less on the formal details, we have developed a system of meta-morph(ology) rules along with a script which translates these rules into FSM processable representations. The introduction of meta-morph rules makes it possible for computationally naive linguists to interact with the system and to expand it in future work. We found that the meta-morph rules help to express linguistic generalisations and reduce the manual effort of writing lexical classes for morphological analysis. Our Tamil FSM currently handles mainly the inflectional morphology of 3,300 verb roots and their 260 forms. Further, it also has a lexicon of approximately 100,000 nouns along with a guesser to handle out-of-vocabulary items. Although the Tamil FSM was primarily developed to be part of a computational grammar, it can also be used as a web or stand-alone application for other NLP tasks, as per general ParGram practice.
Currently, corpus based-similarity, string-based similarity, and knowledge-based similarity techniques are used to compare short phrases. However, no work has been conducted on the similarity of phrases in Sinhala language. In this paper, we present a hybrid methodology to compute the similarity between two Sinhala sentences using a Semantic Similarity Measurement technique (corpus-based similarity measurement plus knowledge-based similarity measurement) that makes use of word order information. Since Sinhala WordNet is still under construction, we used lexical resources in performing this semantic similarity calculation. Evaluation using 4000 sentence pairs yielded an average MSE of 0.145 and a Pearson correla-tion factor of 0.832.
A sentence aligned parallel corpus is an important prerequisite in statistical machine translation. However, manual creation of such a parallel corpus is time consuming, and requires experts fluent in both languages. Automatic creation of a sentence aligned parallel corpus using parallel text is the solution to this problem. In this paper, we present the first ever empirical evaluation carried out to identify the best method to automatically create a sentence aligned Sinhala-Tamil parallel corpus. Annual reports from Sri Lankan government institutions were used as the parallel text for aligning. Despite both Sinhala and Tamil being under-resourced languages, we were able to achieve an F-score value of 0.791 using a hybrid approach that makes use of a bilingual dictionary.
This paper presents a new comprehensive multi-level Part-Of-Speech tag set and a Support Vector Machine based Part-Of-Speech tagger for the Sinhala language. The currently available tag set for Sinhala has two limitations: the unavailability of tags to represent some word classes and the lack of tags to capture inflection based grammatical variations of words. The new tag set, presented in this paper overcomes both of these limitations. The accuracy of available Sinhala Part-Of-Speech taggers, which are based on Hidden Markov Models, still falls far behind state of the art. Our Support Vector Machine based tagger achieved an overall accuracy of 84.68% with 59.86% accuracy for unknown words and 87.12% for known words, when the test set contains 10% of unknown words.