Godson Koffi Kalipe


2025

pdf bib
IrokoBench: A New Benchmark for African Languages in the Age of Large Language Models
David Ifeoluwa Adelani | Jessica Ojo | Israel Abebe Azime | Jian Yun Zhuang | Jesujoba Oluwadara Alabi | Xuanli He | Millicent Ochieng | Sara Hooker | Andiswa Bukula | En-Shiun Annie Lee | Chiamaka Ijeoma Chukwuneke | Happy Buzaaba | Blessing Kudzaishe Sibanda | Godson Koffi Kalipe | Jonathan Mukiibi | Salomon Kabongo Kabenamualu | Foutse Yuehgoh | Mmasibidi Setaka | Lolwethu Ndolela | Nkiruka Odu | Rooweither Mabuya | Salomey Osei | Shamsuddeen Hassan Muhammad | Sokhar Samb | Tadesse Kebede Guge | Tombekai Vangoni Sherman | Pontus Stenetorp
Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)

Despite the widespread adoption of Large language models (LLMs), their remarkable capabilities remain limited to a few high-resource languages. Additionally, many low-resource languages (e.g. African languages) are often evaluated only on basic text classification tasks due to the lack of appropriate or comprehensive benchmarks outside of high-resource languages. In this paper, we introduce IrokoBench—a human-translated benchmark dataset for 17 typologically-diverse low-resource African languages covering three tasks: natural language inference(AfriXNLI), mathematical reasoning(AfriMGSM), and multi-choice knowledge-based QA(AfriMMLU). We use IrokoBench to evaluate zero-shot, few-shot, and translate-test settings(where test sets are translated into English) across 10 open and four proprietary LLMs. Our evaluation reveals a significant performance gap between high-resource languages (such as English and French) and low-resource African languages. We observe a significant performance gap between open and proprietary models, with the highest performing open model, Gemma 2 27B only at 63% of the best-performing proprietary model GPT-4o performance. Machine translating the test set to English before evaluation helped to close the gap for larger models that are English-centric, like Gemma 2 27B and LLaMa 3.1 70B. These findings suggest that more efforts are needed to develop and adapt LLMs for African languages.

2022

pdf bib
A Few Thousand Translations Go a Long Way! Leveraging Pre-trained Models for African News Translation
David Ifeoluwa Adelani | Jesujoba Oluwadara Alabi | Angela Fan | Julia Kreutzer | Xiaoyu Shen | Machel Reid | Dana Ruiter | Dietrich Klakow | Peter Nabende | Ernie Chang | Tajuddeen Gwadabe | Freshia Sackey | Bonaventure F. P. Dossou | Chris Emezue | Colin Leong | Michael Beukman | Shamsuddeen H. Muhammad | Guyo D. Jarso | Oreen Yousuf | Andre N. Niyongabo Rubungo | Gilles Hacheme | Eric Peter Wairagala | Muhammad Umair Nasir | Benjamin A. Ajibade | Tunde Oluwaseyi Ajayi | Yvonne Wambui Gitau | Jade Abbott | Mohamed Ahmed | Millicent Ochieng | Anuoluwapo Aremu | Perez Ogayo | Jonathan Mukiibi | Fatoumata Ouoba Kabore | Godson Koffi Kalipe | Derguene Mbaye | Allahsera Auguste Tapo | Victoire M. Memdjokam Koagne | Edwin Munkoh-Buabeng | Valencia Wagner | Idris Abdulmumin | Ayodele Awokoya | Happy Buzaaba | Blessing Sibanda | Andiswa Bukula | Sam Manthalu
Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

Recent advances in the pre-training for language models leverage large-scale datasets to create multilingual models. However, low-resource languages are mostly left out in these datasets. This is primarily because many widely spoken languages that are not well represented on the web and therefore excluded from the large-scale crawls for datasets. Furthermore, downstream users of these models are restricted to the selection of languages originally chosen for pre-training. This work investigates how to optimally leverage existing pre-trained models to create low-resource translation systems for 16 African languages. We focus on two questions: 1) How can pre-trained models be used for languages not included in the initial pretraining? and 2) How can the resulting translation models effectively transfer to new domains? To answer these questions, we create a novel African news corpus covering 16 languages, of which eight languages are not part of any existing evaluation dataset. We demonstrate that the most effective strategy for transferring both additional languages and additional domains is to leverage small quantities of high-quality translation data to fine-tune large pre-trained models.