Graham Spinks


2020

pdf bib
Autoregressive Reasoning over Chains of Facts with Transformers
Ruben Cartuyvels | Graham Spinks | Marie-Francine Moens
Proceedings of the 28th International Conference on Computational Linguistics

This paper proposes an iterative inference algorithm for multi-hop explanation regeneration, that retrieves relevant factual evidence in the form of text snippets, given a natural language question and its answer. Combining multiple sources of evidence or facts for multi-hop reasoning becomes increasingly hard when the number of sources needed to make an inference grows. Our algorithm copes with this by decomposing the selection of facts from a corpus autoregressively, conditioning the next iteration on previously selected facts. This allows us to use a pairwise learning-to-rank loss. We validate our method on datasets of the TextGraphs 2019 and 2020 Shared Tasks for explanation regeneration. Existing work on this task either evaluates facts in isolation or artificially limits the possible chains of facts, thus limiting multi-hop inference. We demonstrate that our algorithm, when used with a pre-trained transformer model, outperforms the previous state-of-the-art in terms of precision, training time and inference efficiency.

2018

pdf bib
Generating Continuous Representations of Medical Texts
Graham Spinks | Marie-Francine Moens
Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Demonstrations

We present an architecture that generates medical texts while learning an informative, continuous representation with discriminative features. During training the input to the system is a dataset of captions for medical X-Rays. The acquired continuous representations are of particular interest for use in many machine learning techniques where the discrete and high-dimensional nature of textual input is an obstacle. We use an Adversarially Regularized Autoencoder to create realistic text in both an unconditional and conditional setting. We show that this technique is applicable to medical texts which often contain syntactic and domain-specific shorthands. A quantitative evaluation shows that we achieve a lower model perplexity than a traditional LSTM generator.

pdf bib
Evaluating Textual Representations through Image Generation
Graham Spinks | Marie-Francine Moens
Proceedings of the 2018 EMNLP Workshop BlackboxNLP: Analyzing and Interpreting Neural Networks for NLP

We present a methodology for determining the quality of textual representations through the ability to generate images from them. Continuous representations of textual input are ubiquitous in modern Natural Language Processing techniques either at the core of machine learning algorithms or as the by-product at any given layer of a neural network. While current techniques to evaluate such representations focus on their performance on particular tasks, they don’t provide a clear understanding of the level of informational detail that is stored within them, especially their ability to represent spatial information. The central premise of this paper is that visual inspection or analysis is the most convenient method to quickly and accurately determine information content. Through the use of text-to-image neural networks, we propose a new technique to compare the quality of textual representations by visualizing their information content. The method is illustrated on a medical dataset where the correct representation of spatial information and shorthands are of particular importance. For four different well-known textual representations, we show with a quantitative analysis that some representations are consistently able to deliver higher quality visualizations of the information content. Additionally, we show that the quantitative analysis technique correlates with the judgment of a human expert evaluator in terms of alignment.