Graham Todd


pdf bib
ByteSized32: A Corpus and Challenge Task for Generating Task-Specific World Models Expressed as Text Games
Ruoyao Wang | Graham Todd | Xingdi Yuan | Ziang Xiao | Marc-Alexandre Côté | Peter Jansen
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

In this work we investigate the capacity of language models to generate explicit, interpretable, and interactive world models of scientific and common-sense reasoning tasks. We operationalize this as a task of generating text games, expressed as hundreds of lines of Python code. To facilitate this task, we introduce ByteSized32, a corpus of 32 reasoning-focused text games totalling 20k lines of Python code. We empirically demonstrate that GPT-4 can use these games as templates for single-shot in-context learning, successfully producing runnable games on unseen topics in 28% of cases. When allowed to self-reflect on program errors, game runnability substantially increases to 58%. While evaluating simulation fidelity is labor intensive, we introduce a suite of automated metrics to assess game fidelity, technical validity, adherence to task specifications, and winnability, showing a high-degree of agreement with expert human ratings. We pose this as a challenge task to spur further development at the juncture of world modeling and code generation.


pdf bib
Unsupervised Anomaly Detection in Parole Hearings using Language Models
Graham Todd | Catalin Voss | Jenny Hong
Proceedings of the Fourth Workshop on Natural Language Processing and Computational Social Science

Each year, thousands of roughly 150-page parole hearing transcripts in California go unread because legal experts lack the time to review them. Yet, reviewing transcripts is the only means of public oversight in the parole process. To assist reviewers, we present a simple unsupervised technique for using language models (LMs) to identify procedural anomalies in long-form legal text. Our technique highlights unusual passages that suggest further review could be necessary. We utilize a contrastive perplexity score to identify passages, defined as the scaled difference between its perplexities from two LMs, one fine-tuned on the target (parole) domain, and another pre-trained on out-of-domain text to normalize for grammatical or syntactic anomalies. We present quantitative analysis of the results and note that our method has identified some important cases for review. We are also excited about potential applications in unsupervised anomaly detection, and present a brief analysis of results for detecting fake TripAdvisor reviews.