Guanghua Li
2024
Aligning Large Language Models for Controllable Recommendations
Wensheng Lu
|
Jianxun Lian
|
Wei Zhang
|
Guanghua Li
|
Mingyang Zhou
|
Hao Liao
|
Xing Xie
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
Inspired by the exceptional general intelligence of Large Language Models (LLMs), researchers have begun to explore their application in pioneering the next generation of recommender systems — systems that are conversational, explainable, and controllable. However, existing literature primarily concentrates on integrating domain-specific knowledge into LLMs to enhance accuracy using a fixed task template, often overlooking the diversity of recommendation tasks and the ability of LLMs to follow recommendation-specific instructions. To address this gap, we first introduce a collection of supervised learning tasks, augmented with labels derived from a conventional recommender model, aimed at explicitly improving LLMs’ proficiency in adhering to recommendation-specific instructions. Next, we propose a reinforcement learning-based alignment procedure to enhance LLMs’ generalization ability. Extensive experiments on two real-world datasets demonstrate that our approach significantly improves the capability of LLMs to respond to instructions within recommender systems, reducing formatting errors while maintaining a high level of accuracy.
Search
Co-authors
- Wensheng Lu 1
- Jianxun Lian 1
- Wei Zhang 1
- Mingyang Zhou 1
- Hao Liao 1
- show all...
- Xing Xie 1
Venues
- acl1