Guanglin Niu


2022

pdf bib
CAKE: A Scalable Commonsense-Aware Framework For Multi-View Knowledge Graph Completion
Guanglin Niu | Bo Li | Yongfei Zhang | Shiliang Pu
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Knowledge graphs store a large number of factual triples while they are still incomplete, inevitably. The previous knowledge graph completion (KGC) models predict missing links between entities merely relying on fact-view data, ignoring the valuable commonsense knowledge. The previous knowledge graph embedding (KGE) techniques suffer from invalid negative sampling and the uncertainty of fact-view link prediction, limiting KGC’s performance. To address the above challenges, we propose a novel and scalable Commonsense-Aware Knowledge Embedding (CAKE) framework to automatically extract commonsense from factual triples with entity concepts. The generated commonsense augments effective self-supervision to facilitate both high-quality negative sampling (NS) and joint commonsense and fact-view link prediction. Experimental results on the KGC task demonstrate that assembling our framework could enhance the performance of the original KGE models, and the proposed commonsense-aware NS module is superior to other NS techniques. Besides, our proposed framework could be easily adaptive to various KGE models and explain the predicted results.

pdf bib
Perform like an Engine: A Closed-Loop Neural-Symbolic Learning Framework for Knowledge Graph Inference
Guanglin Niu | Bo Li | Yongfei Zhang | Shiliang Pu
Proceedings of the 29th International Conference on Computational Linguistics

Knowledge graph (KG) inference aims to address the natural incompleteness of KGs, including rule learning-based and KG embedding (KGE) models. However, the rule learning-based models suffer from low efficiency and generalization while KGE models lack interpretability. To address these challenges, we propose a novel and effective closed-loop neural-symbolic learning framework EngineKG via incorporating our developed KGE and rule learning modules. KGE module exploits symbolic rules and paths to enhance the semantic association between entities and relations for improving KG embeddings and interpretability. A novel rule pruning mechanism is proposed in the rule learning module by leveraging paths as initial candidate rules and employing KG embeddings together with concepts for extracting more high-quality rules. Experimental results on four real-world datasets show that our model outperforms the relevant baselines on link prediction tasks, demonstrating the superiority of our KG inference model in a neural-symbolic learning fashion. The source code and datasets of this paper are available at https://github.com/ngl567/EngineKG.

2021

pdf bib
Entity Concept-enhanced Few-shot Relation Extraction
Shan Yang | Yongfei Zhang | Guanglin Niu | Qinghua Zhao | Shiliang Pu
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 2: Short Papers)

Few-shot relation extraction (FSRE) is of great importance in long-tail distribution problem, especially in special domain with low-resource data. Most existing FSRE algorithms fail to accurately classify the relations merely based on the information of the sentences together with the recognized entity pairs, due to limited samples and lack of knowledge. To address this problem, in this paper, we proposed a novel entity CONCEPT-enhanced FEw-shot Relation Extraction scheme (ConceptFERE), which introduces the inherent concepts of entities to provide clues for relation prediction and boost the relations classification performance. Firstly, a concept-sentence attention module is developed to select the most appropriate concept from multiple concepts of each entity by calculating the semantic similarity between sentences and concepts. Secondly, a self-attention based fusion module is presented to bridge the gap of concept embedding and sentence embedding from different semantic spaces. Extensive experiments on the FSRE benchmark dataset FewRel have demonstrated the effectiveness and the superiority of the proposed ConceptFERE scheme as compared to the state-of-the-art baselines. Code is available at https://github.com/LittleGuoKe/ConceptFERE.

2020

pdf bib
AutoETER: Automated Entity Type Representation for Knowledge Graph Embedding
Guanglin Niu | Bo Li | Yongfei Zhang | Shiliang Pu | Jingyang Li
Findings of the Association for Computational Linguistics: EMNLP 2020

Recent advances in Knowledge Graph Embedding (KGE) allow for representing entities and relations in continuous vector spaces. Some traditional KGE models leveraging additional type information can improve the representation of entities which however totally rely on the explicit types or neglect the diverse type representations specific to various relations. Besides, none of the existing methods is capable of inferring all the relation patterns of symmetry, inversion and composition as well as the complex properties of 1-N, N-1 and N-N relations, simultaneously. To explore the type information for any KG, we develop a novel KGE framework with Automated Entity TypE Representation (AutoETER), which learns the latent type embedding of each entity by regarding each relation as a translation operation between the types of two entities with a relation-aware projection mechanism. Particularly, our designed automated type representation learning mechanism is a pluggable module which can be easily incorporated with any KGE model. Besides, our approach could model and infer all the relation patterns and complex relations. Experiments on four datasets demonstrate the superior performance of our model compared to state-of-the-art baselines on link prediction tasks, and the visualization of type clustering provides clearly the explanation of type embeddings and verifies the effectiveness of our model.