Guangming Ling
2017
Exploring Relationships Between Writing & Broader Outcomes With Automated Writing Evaluation
Jill Burstein
|
Dan McCaffrey
|
Beata Beigman Klebanov
|
Guangming Ling
Proceedings of the 12th Workshop on Innovative Use of NLP for Building Educational Applications
Writing is a challenge, especially for at-risk students who may lack the prerequisite writing skills required to persist in U.S. 4-year postsecondary (college) institutions. Educators teaching postsecondary courses requiring writing could benefit from a better understanding of writing achievement and its role in postsecondary success. In this paper, novel exploratory work examined how automated writing evaluation (AWE) can inform our understanding of the relationship between postsecondary writing skill and broader success outcomes. An exploratory study was conducted using test-taker essays from a standardized writing assessment of postsecondary student learning outcomes. Findings showed that for the essays, AWE features were found to be predictors of broader outcomes measures: college success and learning outcomes measures. Study findings illustrate AWE’s potential to support educational analytics – i.e., relationships between writing skill and broader outcomes – taking a step toward moving AWE beyond writing assessment and instructional use cases.