Guangxuan Xu


2022

pdf bib
On the Safety of Conversational Models: Taxonomy, Dataset, and Benchmark
Hao Sun | Guangxuan Xu | Jiawen Deng | Jiale Cheng | Chujie Zheng | Hao Zhou | Nanyun Peng | Xiaoyan Zhu | Minlie Huang
Findings of the Association for Computational Linguistics: ACL 2022

Dialogue safety problems severely limit the real-world deployment of neural conversational models and have attracted great research interests recently. However, dialogue safety problems remain under-defined and the corresponding dataset is scarce. We propose a taxonomy for dialogue safety specifically designed to capture unsafe behaviors in human-bot dialogue settings, with focuses on context-sensitive unsafety, which is under-explored in prior works. To spur research in this direction, we compile DiaSafety, a dataset with rich context-sensitive unsafe examples. Experiments show that existing safety guarding tools fail severely on our dataset. As a remedy, we train a dialogue safety classifier to provide a strong baseline for context-sensitive dialogue unsafety detection. With our classifier, we perform safety evaluations on popular conversational models and show that existing dialogue systems still exhibit concerning context-sensitive safety problems.

2020

pdf bib
Data Boost: Text Data Augmentation Through Reinforcement Learning Guided Conditional Generation
Ruibo Liu | Guangxuan Xu | Chenyan Jia | Weicheng Ma | Lili Wang | Soroush Vosoughi
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

Data augmentation is proven to be effective in many NLU tasks, especially for those suffering from data scarcity. In this paper, we present a powerful and easy to deploy text augmentation framework, Data Boost, which augments data through reinforcement learning guided conditional generation. We evaluate Data Boost on three diverse text classification tasks under five different classifier architectures. The result shows that Data Boost can boost the performance of classifiers especially in low-resource data scenarios. For instance, Data Boost improves F1 for the three tasks by 8.7% on average when given only 10% of the whole data for training. We also compare Data Boost with six prior text augmentation methods. Through human evaluations (N=178), we confirm that Data Boost augmentation has comparable quality as the original data with respect to readability and class consistency.