Guangyan Huang


2024

pdf bib
DeakinNLP at BioLaySumm: Evaluating Fine-tuning Longformer and GPT-4 Prompting for Biomedical Lay Summarization
Huy Quoc To | Ming Liu | Guangyan Huang
Proceedings of the 23rd Workshop on Biomedical Natural Language Processing

This paper presents our approaches for the BioLaySumm 2024 Shared Task. We evaluate two methods for generating lay summaries based on biomedical articles: (1) fine-tuning the Longformer-Encoder-Decoder (LED) model, and (2) zero-shot and few-shot prompting on GPT-4. In the fine-tuning approach, we individually fine-tune the LED model using two datasets: PLOS and eLife. This process is conducted under two different settings: one utilizing 50% of the training dataset, and the other utilizing the entire 100% of the training dataset. We compare the results of both methods with GPT-4 in zero-shot and few-shot prompting. The experiment results demonstrate that fine-tuning with 100% of the training data achieves better performance than prompting with GPT-4. However, under data scarcity circumstances, prompting GPT-4 seems to be a better solution.

2022

pdf bib
PIE-QG: Paraphrased Information Extraction for Unsupervised Question Generation from Small Corpora
Dinesh Nagumothu | Bahadorreza Ofoghi | Guangyan Huang | Peter Eklund
Proceedings of the 26th Conference on Computational Natural Language Learning (CoNLL)

Supervised Question Answering systems (QA systems) rely on domain-specific human-labeled data for training. Unsupervised QA systems generate their own question-answer training pairs, typically using secondary knowledge sources to achieve this outcome. Our approach (called PIE-QG) uses Open Information Extraction (OpenIE) to generate synthetic training questions from paraphrased passages and uses the question-answer pairs as training data for a language model for a state-of-the-art QA system based on BERT. Triples in the form of <subject, predicate, object> are extracted from each passage, and questions are formed with subjects (or objects) and predicates while objects (or subjects) are considered as answers. Experimenting on five extractive QA datasets demonstrates that our technique achieves on-par performance with existing state-of-the-art QA systems with the benefit of being trained on an order of magnitude fewer documents and without any recourse to external reference data sources.