Guangzeng Han
2025
Examining and Adapting Time for Multilingual Classification via Mixture of Temporal Experts
Weisi Liu
|
Guangzeng Han
|
Xiaolei Huang
Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)
Time is implicitly embedded in classification process: classifiers are usually built on existing data while to be applied on future data whose distributions (e.g., label and token) may change. However, existing state-of-the-art classification models merely consider the temporal variations and primarily focus on English corpora, which leaves temporal studies less explored, let alone under multilingual settings. In this study, we fill the gap by treating time as domains (e.g., 2024 vs. 2025), examining temporal effects, and developing a domain adaptation framework to generalize classifiers over time on four languages, English, Danish, French, and German. Our framework proposes Mixture of Temporal Experts (MoTE) to leverage both semantic and data distributional shifts to learn and adapt temporal trends into classification models. Our analysis shows classification performance varies over time across different languages, and we experimentally demonstrate that MoTE can enhance classifier generalizability over temporal data shifts. Our study provides analytic insights and addresses the need for time-aware models that perform robustly in multilingual scenarios.
2024
Length-Aware Multi-Kernel Transformer for Long Document Classification
Guangzeng Han
|
Jack Tsao
|
Xiaolei Huang
Proceedings of the 13th Joint Conference on Lexical and Computational Semantics (*SEM 2024)
Lengthy documents pose a unique challenge to neural language models due to substantial memory consumption. While existing state-of-the-art (SOTA) models segment long texts into equal-length snippets (e.g., 128 tokens per snippet) or deploy sparse attention networks, these methods have new challenges of context fragmentation and generalizability due to sentence boundaries and varying text lengths. For example, our empirical analysis has shown that SOTA models consistently overfit one set of lengthy documents (e.g., 2000 tokens) while performing worse on texts with other lengths (e.g., 1000 or 4000). In this study, we propose a Length-Aware Multi-Kernel Transformer (LAMKIT) to address the new challenges for the long document classification. LAMKIT encodes lengthy documents by diverse transformer-based kernels for bridging context boundaries and vectorizes text length by the kernels to promote model robustness over varying document lengths. Experiments on five standard benchmarks from health and law domains show LAMKIT outperforms SOTA models up to an absolute 10.9% improvement. We conduct extensive ablation analyses to examine model robustness and effectiveness over varying document lengths.