Guanhua Chen


2024

pdf bib
A Two-Stage Prediction-Aware Contrastive Learning Framework for Multi-Intent NLU
Guanhua Chen | Yutong Yao | Derek F. Wong | Lidia S. Chao
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)

Multi-intent natural language understanding (NLU) presents a formidable challenge due to the model confusion arising from multiple intents within a single utterance. While previous works train the model contrastively to increase the margin between different multi-intent labels, they are less suited to the nuances of multi-intent NLU. They ignore the rich information between the shared intents, which is beneficial to constructing a better embedding space, especially in low-data scenarios. We introduce a two-stage Prediction-Aware Contrastive Learning (PACL) framework for multi-intent NLU to harness this valuable knowledge. Our approach capitalizes on shared intent information by integrating word-level pre-training and prediction-aware contrastive fine-tuning. We construct a pre-training dataset using a word-level data augmentation strategy. Subsequently, our framework dynamically assigns roles to instances during contrastive fine-tuning while introducing a prediction-aware contrastive loss to maximize the impact of contrastive learning. We present experimental results and empirical analysis conducted on three widely used datasets, demonstrating that our method surpasses the performance of three prominent baselines on both low-data and full-data scenarios.

2023

pdf bib
StyleBART: Decorate Pretrained Model with Style Adapters for Unsupervised Stylistic Headline Generation
Hanqing Wang | Yajing Luo | Boya Xiong | Guanhua Chen | Yun Chen
Findings of the Association for Computational Linguistics: EMNLP 2023

Stylistic headline generation is the task to generate a headline that not only summarizes the content of an article, but also reflects a desired style that attracts users. As style-specific article-headline pairs are scarce, previous researches focus on unsupervised approaches with a standard headline generation dataset and mono-style corpora. In this work, we follow this line and propose StyleBART, an unsupervised approach for stylistic headline generation. Our method decorates the pretrained BART model with adapters that are responsible for different styles and allows the generation of headlines with diverse styles by simply switching the adapters. Different from previous works, StyleBART separates the task of style learning and headline generation, making it possible to freely combine the base model and the style adapters during inference. We further propose an inverse paraphrasing task to enhance the style adapters. Extensive automatic and human evaluations show that StyleBART achieves new state-of-the-art performance in the unsupervised stylistic headline generation task, producing high-quality headlines with the desired style.

pdf bib
mCLIP: Multilingual CLIP via Cross-lingual Transfer
Guanhua Chen | Lu Hou | Yun Chen | Wenliang Dai | Lifeng Shang | Xin Jiang | Qun Liu | Jia Pan | Wenping Wang
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Large-scale vision-language pretrained (VLP) models like CLIP have shown remarkable performance on various downstream cross-modal tasks. However, they are usually biased towards English due to the lack of sufficient non-English image-text pairs. Existing multilingual VLP methods often learn retrieval-inefficient single-stream models by translation-augmented non-English image-text pairs. In this paper, we introduce mCLIP, a retrieval-efficient dual-stream multilingual VLP model, trained by aligning the CLIP model and a Multilingual Text Encoder (MTE) through a novel Triangle Cross-modal Knowledge Distillation (TriKD) method. It is parameter-efficient as only two light projectors on the top of them are updated during distillation. Furthermore, to enhance the token- and sentence-level multilingual representation of the MTE, we propose to train it with machine translation and contrastive learning jointly before the TriKD to provide a better initialization. Empirical results show that mCLIP achieves new state-of-the-art performance for both zero-shot and finetuned multilingual image-text retrieval task.

2022

pdf bib
XLM-D: Decorate Cross-lingual Pre-training Model as Non-Autoregressive Neural Machine Translation
Yong Wang | Shilin He | Guanhua Chen | Yun Chen | Daxin Jiang
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

Pre-training language models have achieved thriving success in numerous natural language understanding and autoregressive generation tasks, but non-autoregressive generation in applications such as machine translation has not sufficiently benefited from the pre-training paradigm. In this work, we establish the connection between a pre-trained masked language model (MLM) and non-autoregressive generation on machine translation. From this perspective, we present XLM-D, which seamlessly transforms an off-the-shelf cross-lingual pre-training model into a non-autoregressive translation (NAT) model with a lightweight yet effective decorator. Specifically, the decorator ensures the representation consistency of the pre-trained model and brings only one additional trainable parameter. Extensive experiments on typical translation datasets show that our models obtain state-of-the-art performance while realizing the inference speed-up by 19.9x. One striking result is that on WMT14 En-De, our XLM-D obtains 29.80 BLEU points with multiple iterations, which outperforms the previous mask-predict model by 2.77 points.

pdf bib
Multilingual Sentence Transformer as A Multilingual Word Aligner
Weikang Wang | Guanhua Chen | Hanqing Wang | Yue Han | Yun Chen
Findings of the Association for Computational Linguistics: EMNLP 2022

Multilingual pretrained language models (mPLMs) have shown their effectiveness in multilingual word alignment induction. However, these methods usually start from mBERT or XLM-R. In this paper, we investigate whether multilingual sentence Transformer LaBSE is a strong multilingual word aligner. This idea is non-trivial as LaBSE is trained to learn language-agnostic sentence-level embeddings, while the alignment extraction task requires the more fine-grained word-level embeddings to be language-agnostic. We demonstrate that the vanilla LaBSE outperforms other mPLMs currently used in the alignment task, and then propose to finetune LaBSE on parallel corpus for further improvement. Experiment results on seven language pairs show that our best aligner outperforms previous state-of-the-art models of all varieties. In addition, our aligner supports different language pairs in a single model, and even achieves new state-of-the-art on zero-shot language pairs that does not appear in the finetuning process.

pdf bib
Towards Making the Most of Cross-Lingual Transfer for Zero-Shot Neural Machine Translation
Guanhua Chen | Shuming Ma | Yun Chen | Dongdong Zhang | Jia Pan | Wenping Wang | Furu Wei
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

This paper demonstrates that multilingual pretraining and multilingual fine-tuning are both critical for facilitating cross-lingual transfer in zero-shot translation, where the neural machine translation (NMT) model is tested on source languages unseen during supervised training. Following this idea, we present SixT+, a strong many-to-English NMT model that supports 100 source languages but is trained with a parallel dataset in only six source languages. SixT+ initializes the decoder embedding and the full encoder with XLM-R large and then trains the encoder and decoder layers with a simple two-stage training strategy. SixT+ achieves impressive performance on many-to-English translation. It significantly outperforms CRISS and m2m-100, two strong multilingual NMT systems, with an average gain of 7.2 and 5.0 BLEU respectively. Additionally, SixT+ offers a set of model parameters that can be further fine-tuned to other unsupervised tasks. We demonstrate that adding SixT+ initialization outperforms state-of-the-art explicitly designed unsupervised NMT models on Si<->En and Ne<->En by over 1.2 average BLEU. When applied to zero-shot cross-lingual abstractive summarization, it produces an average performance gain of 12.3 ROUGE-L over mBART-ft. We conduct detailed analyses to understand the key ingredients of SixT+, including multilinguality of the auxiliary parallel data, positional disentangled encoder, and the cross-lingual transferability of its encoder.

2021

pdf bib
Zero-Shot Cross-Lingual Transfer of Neural Machine Translation with Multilingual Pretrained Encoders
Guanhua Chen | Shuming Ma | Yun Chen | Li Dong | Dongdong Zhang | Jia Pan | Wenping Wang | Furu Wei
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

Previous work mainly focuses on improving cross-lingual transfer for NLU tasks with a multilingual pretrained encoder (MPE), or improving the performance on supervised machine translation with BERT. However, it is under-explored that whether the MPE can help to facilitate the cross-lingual transferability of NMT model. In this paper, we focus on a zero-shot cross-lingual transfer task in NMT. In this task, the NMT model is trained with parallel dataset of only one language pair and an off-the-shelf MPE, then it is directly tested on zero-shot language pairs. We propose SixT, a simple yet effective model for this task. SixT leverages the MPE with a two-stage training schedule and gets further improvement with a position disentangled encoder and a capacity-enhanced decoder. Using this method, SixT significantly outperforms mBART, a pretrained multilingual encoder-decoder model explicitly designed for NMT, with an average improvement of 7.1 BLEU on zero-shot any-to-English test sets across 14 source languages. Furthermore, with much less training computation cost and training data, our model achieves better performance on 15 any-to-English test sets than CRISS and m2m-100, two strong multilingual NMT baselines.

2020

pdf bib
Accurate Word Alignment Induction from Neural Machine Translation
Yun Chen | Yang Liu | Guanhua Chen | Xin Jiang | Qun Liu
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

Despite its original goal to jointly learn to align and translate, prior researches suggest that Transformer captures poor word alignments through its attention mechanism. In this paper, we show that attention weights do capture accurate word alignments and propose two novel word alignment induction methods Shift-Att and Shift-AET. The main idea is to induce alignments at the step when the to-be-aligned target token is the decoder input rather than the decoder output as in previous work. Shift-Att is an interpretation method that induces alignments from the attention weights of Transformer and does not require parameter update or architecture change. Shift-AET extracts alignments from an additional alignment module which is tightly integrated into Transformer and trained in isolation with supervision from symmetrized Shift-Att alignments. Experiments on three publicly available datasets demonstrate that both methods perform better than their corresponding neural baselines and Shift-AET significantly outperforms GIZA++ by 1.4-4.8 AER points.