Guchun Zhang


2024

pdf bib
Text-to-Code Generation with Modality-relative Pre-training
Fenia Christopoulou | Guchun Zhang | Gerasimos Lampouras
Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics (Volume 1: Long Papers)

Large pre-trained language models have recently been expanded and applied to programming language tasks with great success, often through further pre-training of a strictly-natural language model–where training sequences typically contain both natural and (linearised) programming language. Such approaches effectively map both modalities of the sequence into the same embedding space. However, programming language keywords (e.g. “while”) often have very strictly defined semantics. As such, transfer learning from their natural language usage may not necessarily be beneficial to their code application and vise versa. Assuming an already pre-trained language model, in this work we investigate how sequence tokens can be adapted and represented differently, depending on which modality they belong to, and to the ultimate benefit of the downstream task. We experiment with separating embedding spaces between modalities during further model pre-training with modality-relative training objectives. We focus on text-to-code generation and observe consistent improvements across two backbone models and two test sets, measuring pass@k and a novel incremental variation.

2023

pdf bib
A Systematic Study of Performance Disparities in Multilingual Task-Oriented Dialogue Systems
Songbo Hu | Han Zhou | Moy Yuan | Milan Gritta | Guchun Zhang | Ignacio Iacobacci | Anna Korhonen | Ivan Vulić
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

Achieving robust language technologies that can perform well across the world’s many languages is a central goal of multilingual NLP. In this work, we take stock of and empirically analyse task performance disparities that exist between multilingual task-oriented dialogue (ToD) systems. We first define new quantitative measures of absolute and relative equivalence in system performance, capturing disparities across languages and within individual languages. Through a series of controlled experiments, we demonstrate that performance disparities depend on a number of factors: the nature of the ToD task at hand, the underlying pretrained language model, the target language, and the amount of ToD annotated data. We empirically prove the existence of the adaptation and intrinsic biases in current ToD systems: e.g., ToD systems trained for Arabic or Turkish using annotated ToD data fully parallel to English ToD data still exhibit diminished ToD task performance. Beyond providing a series of insights into the performance disparities of ToD systems in different languages, our analyses offer practical tips on how to approach ToD data collection and system development for new languages.

pdf bib
Multi 3 WOZ: A Multilingual, Multi-Domain, Multi-Parallel Dataset for Training and Evaluating Culturally Adapted Task-Oriented Dialog Systems
Songbo Hu | Han Zhou | Mete Hergul | Milan Gritta | Guchun Zhang | Ignacio Iacobacci | Ivan Vulić | Anna Korhonen
Transactions of the Association for Computational Linguistics, Volume 11

Creating high-quality annotated data for task-oriented dialog (ToD) is known to be notoriously difficult, and the challenges are amplified when the goal is to create equitable, culturally adapted, and large-scale ToD datasets for multiple languages. Therefore, the current datasets are still very scarce and suffer from limitations such as translation-based non-native dialogs with translation artefacts, small scale, or lack of cultural adaptation, among others. In this work, we first take stock of the current landscape of multilingual ToD datasets, offering a systematic overview of their properties and limitations. Aiming to reduce all the detected limitations, we then introduce Multi3WOZ, a novel multilingual, multi-domain, multi-parallel ToD dataset. It is large-scale and offers culturally adapted dialogs in 4 languages to enable training and evaluation of multilingual and cross-lingual ToD systems. We describe a complex bottom–up data collection process that yielded the final dataset, and offer the first sets of baseline scores across different ToD-related tasks for future reference, also highlighting its challenging nature.

2018

pdf bib
Alibaba’s Neural Machine Translation Systems for WMT18
Yongchao Deng | Shanbo Cheng | Jun Lu | Kai Song | Jingang Wang | Shenglan Wu | Liang Yao | Guchun Zhang | Haibo Zhang | Pei Zhang | Changfeng Zhu | Boxing Chen
Proceedings of the Third Conference on Machine Translation: Shared Task Papers

This paper describes the submission systems of Alibaba for WMT18 shared news translation task. We participated in 5 translation directions including English ↔ Russian, English ↔ Turkish in both directions and English → Chinese. Our systems are based on Google’s Transformer model architecture, into which we integrated the most recent features from the academic research. We also employed most techniques that have been proven effective during the past WMT years, such as BPE, back translation, data selection, model ensembling and reranking, at industrial scale. For some morphologically-rich languages, we also incorporated linguistic knowledge into our neural network. For the translation tasks in which we have participated, our resulting systems achieved the best case sensitive BLEU score in all 5 directions. Notably, our English → Russian system outperformed the second reranked system by 5 BLEU score.

2014

pdf bib
Estimating Grammar Correctness for a Priori Estimation of Machine Translation Post-Editing Effort
Nicholas H. Kirk | Guchun Zhang | Georg Groh
Proceedings of the EACL 2014 Workshop on Humans and Computer-assisted Translation