Guillaume Wenzek


pdf bib
The Flores-101 Evaluation Benchmark for Low-Resource and Multilingual Machine Translation
Naman Goyal | Cynthia Gao | Vishrav Chaudhary | Peng-Jen Chen | Guillaume Wenzek | Da Ju | Sanjana Krishnan | Marc’Aurelio Ranzato | Francisco Guzmán | Angela Fan
Transactions of the Association for Computational Linguistics, Volume 10

One of the biggest challenges hindering progress in low-resource and multilingual machine translation is the lack of good evaluation benchmarks. Current evaluation benchmarks either lack good coverage of low-resource languages, consider only restricted domains, or are low quality because they are constructed using semi-automatic procedures. In this work, we introduce the Flores-101 evaluation benchmark, consisting of 3001 sentences extracted from English Wikipedia and covering a variety of different topics and domains. These sentences have been translated in 101 languages by professional translators through a carefully controlled process. The resulting dataset enables better assessment of model quality on the long tail of low-resource languages, including the evaluation of many-to-many multilingual translation systems, as all translations are fully aligned. By publicly releasing such a high-quality and high-coverage dataset, we hope to foster progress in the machine translation community and beyond.


pdf bib
Findings of the WMT 2021 Shared Task on Large-Scale Multilingual Machine Translation
Guillaume Wenzek | Vishrav Chaudhary | Angela Fan | Sahir Gomez | Naman Goyal | Somya Jain | Douwe Kiela | Tristan Thrush | Francisco Guzmán
Proceedings of the Sixth Conference on Machine Translation

We present the results of the first task on Large-Scale Multilingual Machine Translation. The task consists on the many-to-many evaluation of a single model across a variety of source and target languages. This year, the task consisted on three different settings: (i) SMALL-TASK1 (Central/South-Eastern European Languages), (ii) the SMALL-TASK2 (South-East Asian Languages), and (iii) FULL-TASK (all 101 x 100 language pairs). All the tasks used the FLORES-101 dataset as the evaluation benchmark. To ensure the longevity of the dataset, the test sets were not publicly released and the models were evaluated in a controlled environment on Dynabench. There were a total of 10 participating teams for the tasks, with a total of 151 intermediate model submissions and 13 final models. This year’s result show a significant improvement over the known base-lines with +17.8 BLEU for SMALL-TASK2, +10.6 for FULL-TASK and +3.6 for SMALL-TASK1.

pdf bib
CCMatrix: Mining Billions of High-Quality Parallel Sentences on the Web
Holger Schwenk | Guillaume Wenzek | Sergey Edunov | Edouard Grave | Armand Joulin | Angela Fan
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

We show that margin-based bitext mining in a multilingual sentence space can be successfully scaled to operate on monolingual corpora of billions of sentences. We use 32 snapshots of a curated common crawl corpus (Wenzel et al, 2019) totaling 71 billion unique sentences. Using one unified approach for 90 languages, we were able to mine 10.8 billion parallel sentences, out of which only 2.9 billions are aligned with English. We illustrate the capability of our scalable mining system to create high quality training sets from one language to any other by training hundreds of different machine translation models and evaluating them on the many-to-many TED benchmark. Further, we evaluate on competitive translation benchmarks such as WMT and WAT. Using only mined bitext, we set a new state of the art for a single system on the WMT’19 test set for English-German/Russian/Chinese. In particular, our English/German and English/Russian systems outperform the best single ones by over 4 BLEU points and are on par with best WMT’19 systems, which train on the WMT training data and augment it with backtranslation. We also achieve excellent results for distant languages pairs like Russian/Japanese, outperforming the best submission at the 2020 WAT workshop. All of the mined bitext will be freely available.


pdf bib
Unsupervised Cross-lingual Representation Learning at Scale
Alexis Conneau | Kartikay Khandelwal | Naman Goyal | Vishrav Chaudhary | Guillaume Wenzek | Francisco Guzmán | Edouard Grave | Myle Ott | Luke Zettlemoyer | Veselin Stoyanov
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

This paper shows that pretraining multilingual language models at scale leads to significant performance gains for a wide range of cross-lingual transfer tasks. We train a Transformer-based masked language model on one hundred languages, using more than two terabytes of filtered CommonCrawl data. Our model, dubbed XLM-R, significantly outperforms multilingual BERT (mBERT) on a variety of cross-lingual benchmarks, including +14.6% average accuracy on XNLI, +13% average F1 score on MLQA, and +2.4% F1 score on NER. XLM-R performs particularly well on low-resource languages, improving 15.7% in XNLI accuracy for Swahili and 11.4% for Urdu over previous XLM models. We also present a detailed empirical analysis of the key factors that are required to achieve these gains, including the trade-offs between (1) positive transfer and capacity dilution and (2) the performance of high and low resource languages at scale. Finally, we show, for the first time, the possibility of multilingual modeling without sacrificing per-language performance; XLM-R is very competitive with strong monolingual models on the GLUE and XNLI benchmarks. We will make our code and models publicly available.

pdf bib
CCNet: Extracting High Quality Monolingual Datasets from Web Crawl Data
Guillaume Wenzek | Marie-Anne Lachaux | Alexis Conneau | Vishrav Chaudhary | Francisco Guzmán | Armand Joulin | Edouard Grave
Proceedings of the 12th Language Resources and Evaluation Conference

Pre-training text representations have led to significant improvements in many areas of natural language processing. The quality of these models benefits greatly from the size of the pretraining corpora as long as its quality is preserved. In this paper, we describe an automatic pipeline to extract massive high-quality monolingual datasets from Common Crawl for a variety of languages. Our pipeline follows the data processing introduced in fastText (Mikolov et al., 2017; Grave et al., 2018), that deduplicates documents and identifies their language. We augment this pipeline with a filtering step to select documents that are close to high quality corpora like Wikipedia.

pdf bib
Generating Fact Checking Briefs
Angela Fan | Aleksandra Piktus | Fabio Petroni | Guillaume Wenzek | Marzieh Saeidi | Andreas Vlachos | Antoine Bordes | Sebastian Riedel
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

Fact checking at scale is difficult—while the number of active fact checking websites is growing, it remains too small for the needs of the contemporary media ecosystem. However, despite good intentions, contributions from volunteers are often error-prone, and thus in practice restricted to claim detection. We investigate how to increase the accuracy and efficiency of fact checking by providing information about the claim before performing the check, in the form of natural language briefs. We investigate passage-based briefs, containing a relevant passage from Wikipedia, entity-centric ones consisting of Wikipedia pages of mentioned entities, and Question-Answering Briefs, with questions decomposing the claim, and their answers. To produce QABriefs, we develop QABriefer, a model that generates a set of questions conditioned on the claim, searches the web for evidence, and generates answers. To train its components, we introduce QABriefDataset We show that fact checking with briefs — in particular QABriefs — increases the accuracy of crowdworkers by 10% while slightly decreasing the time taken. For volunteer (unpaid) fact checkers, QABriefs slightly increase accuracy and reduce the time required by around 20%.


pdf bib
Facebook AI’s WAT19 Myanmar-English Translation Task Submission
Peng-Jen Chen | Jiajun Shen | Matthew Le | Vishrav Chaudhary | Ahmed El-Kishky | Guillaume Wenzek | Myle Ott | Marc’Aurelio Ranzato
Proceedings of the 6th Workshop on Asian Translation

This paper describes Facebook AI’s submission to the WAT 2019 Myanmar-English translation task. Our baseline systems are BPE-based transformer models. We explore methods to leverage monolingual data to improve generalization, including self-training, back-translation and their combination. We further improve results by using noisy channel re-ranking and ensembling. We demonstrate that these techniques can significantly improve not only a system trained with additional monolingual data, but even the baseline system trained exclusively on the provided small parallel dataset. Our system ranks first in both directions according to human evaluation and BLEU, with a gain of over 8 BLEU points above the second best system.


pdf bib
Trans-gram, Fast Cross-lingual Word-embeddings
Jocelyn Coulmance | Jean-Marc Marty | Guillaume Wenzek | Amine Benhalloum
Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing