Guillem Collell


pdf bib
SeqL at SemEval-2022 Task 11: An Ensemble of Transformer Based Models for Complex Named Entity Recognition Task
Fadi Hassan | Wondimagegnhue Tufa | Guillem Collell | Piek Vossen | Lisa Beinborn | Adrian Flanagan | Kuan Eeik Tan
Proceedings of the 16th International Workshop on Semantic Evaluation (SemEval-2022)

This paper presents our system used to participate in task 11 (MultiCONER) of the SemEval 2022 competition. Our system ranked fourth place in track 12 (Multilingual) and fifth place in track 13 (Code-Mixed). The goal of track 12 is to detect complex named entities in a multilingual setting, while track 13 is dedicated to detecting complex named entities in a code-mixed setting. Both systems were developed using transformer-based language models. We used an ensemble of XLM-RoBERTa-large and Microsoft/infoxlm-large with a Conditional Random Field (CRF) layer. In addition, we describe the algorithms employed to train our models and our hyper-parameter selection. We furthermore study the impact of different methods to aggregate the outputs of the individual models that compose our ensemble. Finally, we present an extensive analysis of the results and errors.


pdf bib
Decoding Language Spatial Relations to 2D Spatial Arrangements
Gorjan Radevski | Guillem Collell | Marie-Francine Moens | Tinne Tuytelaars
Findings of the Association for Computational Linguistics: EMNLP 2020

We address the problem of multimodal spatial understanding by decoding a set of language-expressed spatial relations to a set of 2D spatial arrangements in a multi-object and multi-relationship setting. We frame the task as arranging a scene of clip-arts given a textual description. We propose a simple and effective model architecture Spatial-Reasoning Bert (SR-Bert), trained to decode text to 2D spatial arrangements in a non-autoregressive manner. SR-Bert can decode both explicit and implicit language to 2D spatial arrangements, generalizes to out-of-sample data to a reasonable extent and can generate complete abstract scenes if paired with a clip-arts predictor. Finally, we qualitatively evaluate our method with a user study, validating that our generated spatial arrangements align with human expectation.


pdf bib
Learning Representations Specialized in Spatial Knowledge: Leveraging Language and Vision
Guillem Collell | Marie-Francine Moens
Transactions of the Association for Computational Linguistics, Volume 6

Spatial understanding is crucial in many real-world problems, yet little progress has been made towards building representations that capture spatial knowledge. Here, we move one step forward in this direction and learn such representations by leveraging a task consisting in predicting continuous 2D spatial arrangements of objects given object-relationship-object instances (e.g., “cat under chair”) and a simple neural network model that learns the task from annotated images. We show that the model succeeds in this task and, furthermore, that it is capable of predicting correct spatial arrangements for unseen objects if either CNN features or word embeddings of the objects are provided. The differences between visual and linguistic features are discussed. Next, to evaluate the spatial representations learned in the previous task, we introduce a task and a dataset consisting in a set of crowdsourced human ratings of spatial similarity for object pairs. We find that both CNN (convolutional neural network) features and word embeddings predict human judgments of similarity well and that these vectors can be further specialized in spatial knowledge if we update them when training the model that predicts spatial arrangements of objects. Overall, this paper paves the way towards building distributed spatial representations, contributing to the understanding of spatial expressions in language.

pdf bib
Do Neural Network Cross-Modal Mappings Really Bridge Modalities?
Guillem Collell | Marie-Francine Moens
Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)

Feed-forward networks are widely used in cross-modal applications to bridge modalities by mapping distributed vectors of one modality to the other, or to a shared space. The predicted vectors are then used to perform e.g., retrieval or labeling. Thus, the success of the whole system relies on the ability of the mapping to make the neighborhood structure (i.e., the pairwise similarities) of the predicted vectors akin to that of the target vectors. However, whether this is achieved has not been investigated yet. Here, we propose a new similarity measure and two ad hoc experiments to shed light on this issue. In three cross-modal benchmarks we learn a large number of language-to-vision and vision-to-language neural network mappings (up to five layers) using a rich diversity of image and text features and loss functions. Our results reveal that, surprisingly, the neighborhood structure of the predicted vectors consistently resembles more that of the input vectors than that of the target vectors. In a second experiment, we further show that untrained nets do not significantly disrupt the neighborhood (i.e., semantic) structure of the input vectors.


pdf bib
Is an Image Worth More than a Thousand Words? On the Fine-Grain Semantic Differences between Visual and Linguistic Representations
Guillem Collell | Marie-Francine Moens
Proceedings of COLING 2016, the 26th International Conference on Computational Linguistics: Technical Papers

Human concept representations are often grounded with visual information, yet some aspects of meaning cannot be visually represented or are better described with language. Thus, vision and language provide complementary information that, properly combined, can potentially yield more complete concept representations. Recently, state-of-the-art distributional semantic models and convolutional neural networks have achieved great success in representing linguistic and visual knowledge respectively. In this paper, we compare both, visual and linguistic representations in their ability to capture different types of fine-grain semantic knowledge—or attributes—of concepts. Humans often describe objects using attributes, that is, properties such as shape, color or functionality, which often transcend the linguistic and visual modalities. In our setting, we evaluate how well attributes can be predicted by using the unimodal representations as inputs. We are interested in first, finding out whether attributes are generally better captured by either the vision or by the language modality; and second, if none of them is clearly superior (as we hypothesize), what type of attributes or semantic knowledge are better encoded from each modality. Ultimately, our study sheds light on the potential of combining visual and textual representations.