Guohua Wang


2024

pdf bib
HyCoRec: Hypergraph-Enhanced Multi-Preference Learning for Alleviating Matthew Effect in Conversational Recommendation
Yongsen Zheng | Ruilin Xu | Ziliang Chen | Guohua Wang | Mingjie Qian | Jinghui Qin | Liang Lin
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

The Matthew effect is a notorious issue in Recommender Systems (RSs), i.e., the rich get richer and the poor get poorer, wherein popular items are overexposed while less popular ones are regularly ignored. Most methods examine Matthew effect in static or nearly-static recommendation scenarios. However, the Matthew effect will be increasingly amplified when the user interacts with the system over time. To address these issues, we propose a novel paradigm, Hypergraph-Enhanced Multi-Preference Learning for Alleviating Matthew Effect in Conversational Recommendation (HyCoRec), which aims to alleviate the Matthew effect in conversational recommendation. Concretely, HyCoRec devotes to alleviate the Matthew effect by learning multi-aspect preferences, i.e., item-, entity-, word-, review-, and knowledge-aspect preferences, to effectively generate responses in the conversational task and accurately predict items in the recommendation task when the user chats with the system over time. Extensive experiments conducted on two benchmarks validate that HyCoRec achieves new state-of-the-art performance and the superior of alleviating Matthew effect.

pdf bib
Mitigating Matthew Effect: Multi-Hypergraph Boosted Multi-Interest Self-Supervised Learning for Conversational Recommendation
Yongsen Zheng | Ruilin Xu | Guohua Wang | Liang Lin | Kwok-Yan Lam
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing

The Matthew effect is a big challenge in Recommender Systems (RSs), where popular items tend to receive increasing attention, while less popular ones are often overlooked, perpetuating existing disparities. Although many existing methods attempt to mitigate Matthew effect in the static or quasi-static recommendation scenarios, such issue will be more pronounced as users engage with the system over time. To this end, we propose a novel framework, Multi-Hypergraph Boosted Multi-Interest Self-Supervised Learning for Conversational Recommendation (HiCore), aiming to address Matthew effect in the Conversational Recommender System (CRS) involving the dynamic user-system feedback loop. It devotes to learn multi-level user interests by building a set of hypergraphs (i.e., item-, entity-, word-oriented multiple-channel hypergraphs) to alleviate the Matthew effec. Extensive experiments on four CRS-based datasets showcase that HiCore attains a new state-of-the-art performance, underscoring its superiority in mitigating the Matthew effect effectively. Our code is available at https://github.com/zysensmile/HiCore.

pdf bib
Knowledge-Guided Cross-Topic Visual Question Generation
Hongfei Liu | Guohua Wang | Jiayuan Xie | Jiali Chen | Wenhao Fang | Yi Cai
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)

Visual question generation (VQG) task aims to generate high-quality questions based on the input image. Current methods primarily focus on generating questions containing specified content utilizing answers or question types as constraints. However, these constraints make it challenging to control the topic of generated questions (e.g., conversation or test subject topics) for various applications. Thus, it is necessary to utilize topics as constraints to guide question generation. Considering that there are many topics and it is almost impossible for human annotations to cover them, we propose the cross-topic learning VQG (CTL-VQG) task, which aims to generate questions related to unseen topics in cross-topic scenarios. In this paper, we propose a knowledge-guided cross-topic visual question generation (KC-VQG) model to extract unseen topic-related information for question generation. Specifically, an image-topic feature extractor is introduced in our model to extract topic-related intuitive visual features; an image-topic knowledge extractor is used to extract and select the most appropriate topic-related implicit knowledge from large language models for generating questions. Extensive experiments show that our model outperforms baselines and can effectively generate unseen topic-related questions in cross-topic scenarios.

2020

pdf bib
A Two-phase Prototypical Network Model for Incremental Few-shot Relation Classification
Haopeng Ren | Yi Cai | Xiaofeng Chen | Guohua Wang | Qing Li
Proceedings of the 28th International Conference on Computational Linguistics

Relation Classification (RC) plays an important role in natural language processing (NLP). Current conventional supervised and distantly supervised RC models always make a closed-world assumption which ignores the emergence of novel relations in open environment. To incrementally recognize the novel relations, current two solutions (i.e, re-training and lifelong learning) are designed but suffer from the lack of large-scale labeled data for novel relations. Meanwhile, prototypical network enjoys better performance on both fields of deep supervised learning and few-shot learning. However, it still suffers from the incompatible feature embedding problem when the novel relations come in. Motivated by them, we propose a two-phase prototypical network with prototype attention alignment and triplet loss to dynamically recognize the novel relations with a few support instances meanwhile without catastrophic forgetting. Extensive experiments are conducted to evaluate the effectiveness of our proposed model.