Guoping Huang


pdf bib
An Energy-based Model for Word-level AutoCompletion in Computer-aided Translation
Cheng Yang | Guoping Huang | Mo Yu | Zhirui Zhang | Siheng Li | Mingming Yang | Shuming Shi | Yujiu Yang | Lemao Liu
Transactions of the Association for Computational Linguistics, Volume 12

Word-level AutoCompletion (WLAC) is a rewarding yet challenging task in Computer-aided Translation. Existing work addresses this task through a classification model based on a neural network that maps the hidden vector of the input context into its corresponding label (i.e., the candidate target word is treated as a label). Since the context hidden vector itself does not take the label into account and it is projected to the label through a linear classifier, the model cannot sufficiently leverage valuable information from the source sentence as verified in our experiments, which eventually hinders its overall performance. To alleviate this issue, this work proposes an energy-based model for WLAC, which enables the context hidden vector to capture crucial information from the source sentence. Unfortunately, training and inference suffer from efficiency and effectiveness challenges, therefore we employ three simple yet effective strategies to put our model into practice. Experiments on four standard benchmarks demonstrate that our reranking-based approach achieves substantial improvements (about 6.07%) over the previous state-of-the-art model. Further analyses show that each strategy of our approach contributes to the final performance.1


pdf bib
Rethinking Translation Memory Augmented Neural Machine Translation
Hongkun Hao | Guoping Huang | Lemao Liu | Zhirui Zhang | Shuming Shi | Rui Wang
Findings of the Association for Computational Linguistics: ACL 2023

This paper rethinks translation memory augmented neural machine translation (TM-augmented NMT) from two perspectives, i.e., a probabilistic view of retrieval and the variance-bias decomposition principle. The finding demonstrates that TM-augmented NMT is good at the ability of fitting data (i.e., lower bias) but is more sensitive to the fluctuations in the training data (i.e., higher variance), which provides an explanation to a recently reported contradictory phenomenon on the same translation task: TM-augmented NMT substantially advances NMT without TM under the high resource scenario whereas it fails under the low resource scenario. Then this paper proposes a simple yet effective TM-augmented NMT model to promote the variance and address the contradictory phenomenon. Extensive experiments show that the proposed TM-augmented NMT achieves consistent gains over both conventional NMT and existing TM-augmented NMT under two variance-preferable (low resource and plug-and-play) scenarios as well as the high resource scenario.

pdf bib
IMTLab: An Open-Source Platform for Building, Evaluating, and Diagnosing Interactive Machine Translation Systems
Xu Huang | Zhirui Zhang | Ruize Gao | Yichao Du | Lemao Liu | Guoping Huang | Shuming Shi | Jiajun Chen | Shujian Huang
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

We present IMTLab, an open-source end-to-end interactive machine translation (IMT) system platform that enables researchers to quickly build IMT systems with state-of-the-art models, perform an end-to-end evaluation, and diagnose the weakness of systems. IMTLab treats the whole interactive translation process as a task-oriented dialogue with a human-in-the-loop setting, in which human interventions can be explicitly incorporated to produce high-quality, error-free translations. To this end, a general communication interface is designed to support the flexible IMT architectures and user policies. Based on the proposed design, we construct a simulated and real interactive environment to achieve end-to-end evaluation and leverage the framework to systematically evaluate previous IMT systems. Our simulated and manual experiments show that the prefix-constrained decoding approach still gains the lowest editing cost in the end-to-end evaluation, while BiTIIMT achieves comparable editing cost with a better interactive experience.

pdf bib
Rethinking Word-Level Auto-Completion in Computer-Aided Translation
Xingyu Chen | Lemao Liu | Guoping Huang | Zhirui Zhang | Mingming Yang | Shuming Shi | Rui Wang
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

Word-level auto-completion (WLAC) plays a crucial role in Computer-Assisted Translation. While previous studies have primarily focused on designing complex model architectures, this paper takes a different perspective by rethinking the fundamental question: what kind of words are good auto-completions? We introduce a measurable criterion to address this question and discover that existing WLAC models often fail to meet this criterion. Building upon this observation, we propose an effective approach to enhance WLAC performance by promoting adherence to the criterion. Notably, the proposed approach is general and can be applied to various encoder-based architectures. Through extensive experiments, we demonstrate that our approach outperforms the top-performing system submitted to the WLAC shared tasks in WMT2022, while utilizing significantly smaller model sizes.

pdf bib
Findings of the Word-Level AutoCompletion Shared Task in WMT 2023
Lemao Liu | Francisco Casacuberta | George Foster | Guoping Huang | Philipp Koehn | Geza Kovacs | Shuming Shi | Taro Watanabe | Chengqing Zong
Proceedings of the Eighth Conference on Machine Translation

This paper presents the overview of the second Word-Level autocompletion (WLAC) shared task for computer-aided translation, which aims to automatically complete a target word given a translation context including a human typed character sequence. We largely adhere to the settings of the previous round of the shared task, but with two main differences: 1) The typed character sequence is obtained from the typing process of human translators to demonstrate system performance under real-world scenarios when preparing some type of testing examples; 2) We conduct a thorough analysis on the results of the submitted systems from three perspectives. From the experimental results, we observe that translation tasks are helpful to improve the performance of WLAC models. Additionally, our further analysis shows that the semantic error accounts for a significant portion of all errors, and thus it would be promising to take this type of errors into account in future.

pdf bib
Effidit: An Assistant for Improving Writing Efficiency
Shuming Shi | Enbo Zhao | Wei Bi | Deng Cai | Leyang Cui | Xinting Huang | Haiyun Jiang | Duyu Tang | Kaiqiang Song | Longyue Wang | Chenyan Huang | Guoping Huang | Yan Wang | Piji Li
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 3: System Demonstrations)

Writing assistants are valuable tools that can help writers improve their writing skills. We introduce Effidit (Efficient and Intelligent Editing), a digital writing assistant that facilitates users to write higher-quality text more efficiently through the use of Artificial Intelligence (AI) and Natural Language Processing (NLP) technologies. We significantly expand the capacities of a writing assistantby providing functions in three modules: text completion, hint recommendation, and writing refinement. Based on the above efforts, Effidit can efficiently assist users in creating their own text. Effidit has been deployed to several Tencent products and publicly released at


pdf bib
Exploring and Adapting Chinese GPT to Pinyin Input Method
Minghuan Tan | Yong Dai | Duyu Tang | Zhangyin Feng | Guoping Huang | Jing Jiang | Jiwei Li | Shuming Shi
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

While GPT has become the de-facto method for text generation tasks, its application to pinyin input method remains unexplored. In this work, we make the first exploration to leverage Chinese GPT for pinyin input method. We find that a frozen GPT achieves state-of-the-art performance on perfect pinyin. However, the performance drops dramatically when the input includes abbreviated pinyin.A reason is that an abbreviated pinyin can be mapped to many perfect pinyin, which links to even larger number of Chinese characters. We mitigate this issue with two strategies,including enriching the context with pinyin and optimizing the training process to help distinguish homophones. To further facilitate the evaluation of pinyin input method, we create a dataset consisting of 270K instances from fifteen domains. Results show that our approach improves the performance on abbreviated pinyin across all domains. Model analysis demonstrates that both strategiescontribute to the performance boost.

pdf bib
BiTIIMT: A Bilingual Text-infilling Method for Interactive Machine Translation
Yanling Xiao | Lemao Liu | Guoping Huang | Qu Cui | Shujian Huang | Shuming Shi | Jiajun Chen
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Interactive neural machine translation (INMT) is able to guarantee high-quality translations by taking human interactions into account. Existing IMT systems relying on lexical constrained decoding (LCD) enable humans to translate in a flexible translation order beyond the left-to-right. However, they typically suffer from two significant limitations in translation efficiency and quality due to the reliance on LCD. In this work, we propose a novel BiTIIMT system, Bilingual Text-Infilling for Interactive Neural Machine Translation. The key idea to BiTIIMT is Bilingual Text-infilling (BiTI) which aims to fill missing segments in a manually revised translation for a given source sentence. We propose a simple yet effective solution by casting this task as a sequence-to-sequence task. In this way, our system performs decoding without explicit constraints and makes full use of revised words for better translation prediction. Experiment results show that BiTiIMT performs significantly better and faster than state-of-the-art LCD-based IMT on three translation tasks.

pdf bib
Findings of the Word-Level AutoCompletion Shared Task in WMT 2022
Francisco Casacuberta | George Foster | Guoping Huang | Philipp Koehn | Geza Kovacs | Lemao Liu | Shuming Shi | Taro Watanabe | Chengqing Zong
Proceedings of the Seventh Conference on Machine Translation (WMT)

Recent years have witnessed rapid advancements in machine translation, but the state-of-the-art machine translation system still can not satisfy the high requirements in some rigorous translation scenarios. Computer-aided translation (CAT) provides a promising solution to yield a high-quality translation with a guarantee. Unfortunately, due to the lack of popular benchmarks, the research on CAT is not well developed compared with machine translation. In this year, we hold a new shared task called Word-level AutoCompletion (WLAC) for CAT in WMT. Specifically, we introduce some resources to train a WLAC model, and particularly we collect data from CAT systems as a part of test data for this shared task. In addition, we employ both automatic and human evaluations to measure the performance of the submitted systems, and our final evaluation results reveal some findings for the WLAC task.

pdf bib
Investigating Data Variance in Evaluations of Automatic Machine Translation Metrics
Jiannan Xiang | Huayang Li | Yahui Liu | Lemao Liu | Guoping Huang | Defu Lian | Shuming Shi
Findings of the Association for Computational Linguistics: ACL 2022

Current practices in metric evaluation focus on one single dataset, e.g., Newstest dataset in each year’s WMT Metrics Shared Task. However, in this paper, we qualitatively and quantitatively show that the performances of metrics are sensitive to data. The ranking of metrics varies when the evaluation is conducted on different datasets. Then this paper further investigates two potential hypotheses, i.e., insignificant data points and the deviation of i.i.d assumption, which may take responsibility for the issue of data variance. In conclusion, our findings suggest that when evaluating automatic translation metrics, researchers should take data variance into account and be cautious to report the results on unreliable datasets, because it may leads to inconsistent results with most of the other datasets.

pdf bib
Visualizing the Relationship Between Encoded Linguistic Information and Task Performance
Jiannan Xiang | Huayang Li | Defu Lian | Guoping Huang | Taro Watanabe | Lemao Liu
Findings of the Association for Computational Linguistics: ACL 2022

Probing is popular to analyze whether linguistic information can be captured by a well-trained deep neural model, but it is hard to answer how the change of the encoded linguistic information will affect task performance. To this end, we study the dynamic relationship between the encoded linguistic information and task performance from the viewpoint of Pareto Optimality. Its key idea is to obtain a set of models which are Pareto-optimal in terms of both objectives. From this viewpoint, we propose a method to optimize the Pareto-optimal models by formalizing it as a multi-objective optimization problem. We conduct experiments on two popular NLP tasks, i.e., machine translation and language modeling, and investigate the relationship between several kinds of linguistic information and task performances. Experimental results demonstrate that the proposed method is better than a baseline method. Our empirical findings suggest that some syntactic information is helpful for NLP tasks whereas encoding more syntactic information does not necessarily lead to better performance, because the model architecture is also an important factor.

pdf bib
On Synthetic Data for Back Translation
Jiahao Xu | Yubin Ruan | Wei Bi | Guoping Huang | Shuming Shi | Lihui Chen | Lemao Liu
Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

Back translation (BT) is one of the most significant technologies in NMT research fields. Existing attempts on BT share a common characteristic: they employ either beam search or random sampling to generate synthetic data with a backward model but seldom work studies the role of synthetic data in the performance of BT. This motivates us to ask a fundamental question: what kind of synthetic data contributes to BT performance?Through both theoretical and empirical studies, we identify two key factors on synthetic data controlling the back-translation NMT performance, which are quality and importance. Furthermore, based on our findings, we propose a simple yet effective method to generate synthetic data to better trade off both factors so as to yield the better performance for BT. We run extensive experiments on WMT14 DE-EN, EN-DE, and RU-EN benchmark tasks. By employing our proposed method to generate synthetic data, our BT model significantly outperforms the standard BT baselines (i.e., beam and sampling based methods for data generation), which proves the effectiveness of our proposed methods.


pdf bib
Fast and Accurate Neural Machine Translation with Translation Memory
Qiuxiang He | Guoping Huang | Qu Cui | Li Li | Lemao Liu
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

It is generally believed that a translation memory (TM) should be beneficial for machine translation tasks. Unfortunately, existing wisdom demonstrates the superiority of TM-based neural machine translation (NMT) only on the TM-specialized translation tasks rather than general tasks, with a non-negligible computational overhead. In this paper, we propose a fast and accurate approach to TM-based NMT within the Transformer framework: the model architecture is simple and employs a single bilingual sentence as its TM, leading to efficient training and inference; and its parameters are effectively optimized through a novel training criterion. Extensive experiments on six TM-specialized tasks show that the proposed approach substantially surpasses several strong baselines that use multiple TMs, in terms of BLEU and running time. In particular, the proposed approach also advances the strong baselines on two general tasks (WMT news Zh->En and En->De).

pdf bib
GWLAN: General Word-Level AutocompletioN for Computer-Aided Translation
Huayang Li | Lemao Liu | Guoping Huang | Shuming Shi
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

Computer-aided translation (CAT), the use of software to assist a human translator in the translation process, has been proven to be useful in enhancing the productivity of human translators. Autocompletion, which suggests translation results according to the text pieces provided by human translators, is a core function of CAT. There are two limitations in previous research in this line. First, most research works on this topic focus on sentence-level autocompletion (i.e., generating the whole translation as a sentence based on human input), but word-level autocompletion is under-explored so far. Second, almost no public benchmarks are available for the autocompletion task of CAT. This might be among the reasons why research progress in CAT is much slower compared to automatic MT. In this paper, we propose the task of general word-level autocompletion (GWLAN) from a real-world CAT scenario, and construct the first public benchmark to facilitate research in this topic. In addition, we propose an effective method for GWLAN and compare it with several strong baselines. Experiments demonstrate that our proposed method can give significantly more accurate predictions than the baseline methods on our benchmark datasets.


pdf bib
Evaluating Explanation Methods for Neural Machine Translation
Jierui Li | Lemao Liu | Huayang Li | Guanlin Li | Guoping Huang | Shuming Shi
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

Recently many efforts have been devoted to interpreting the black-box NMT models, but little progress has been made on metrics to evaluate explanation methods. Word Alignment Error Rate can be used as such a metric that matches human understanding, however, it can not measure explanation methods on those target words that are not aligned to any source word. This paper thereby makes an initial attempt to evaluate explanation methods from an alternative viewpoint. To this end, it proposes a principled metric based on fidelity in regard to the predictive behavior of the NMT model. As the exact computation for this metric is intractable, we employ an efficient approach as its approximation. On six standard translation tasks, we quantitatively evaluate several explanation methods in terms of the proposed metric and we reveal some valuable findings for these explanation methods in our experiments.

pdf bib
Regularized Context Gates on Transformer for Machine Translation
Xintong Li | Lemao Liu | Rui Wang | Guoping Huang | Max Meng
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

Context gates are effective to control the contributions from the source and target contexts in the recurrent neural network (RNN) based neural machine translation (NMT). However, it is challenging to extend them into the advanced Transformer architecture, which is more complicated than RNN. This paper first provides a method to identify source and target contexts and then introduce a gate mechanism to control the source and target contributions in Transformer. In addition, to further reduce the bias problem in the gate mechanism, this paper proposes a regularization method to guide the learning of the gates with supervision automatically generated using pointwise mutual information. Extensive experiments on 4 translation datasets demonstrate that the proposed model obtains an averaged gain of 1.0 BLEU score over a strong Transformer baseline.

pdf bib
Touch Editing: A Flexible One-Time Interaction Approach for Translation
Qian Wang | Jiajun Zhang | Lemao Liu | Guoping Huang | Chengqing Zong
Proceedings of the 1st Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics and the 10th International Joint Conference on Natural Language Processing

We propose a touch-based editing method for translation, which is more flexible than traditional keyboard-mouse-based translation postediting. This approach relies on touch actions that users perform to indicate translation errors. We present a dual-encoder model to handle the actions and generate refined translations. To mimic the user feedback, we adopt the TER algorithm comparing between draft translations and references to automatically extract the simulated actions for training data construction. Experiments on translation datasets with simulated editing actions show that our method significantly improves original translation of Transformer (up to 25.31 BLEU) and outperforms existing interactive translation methods (up to 16.64 BLEU). We also conduct experiments on post-editing dataset to further prove the robustness and effectiveness of our method.

pdf bib
On the Branching Bias of Syntax Extracted from Pre-trained Language Models
Huayang Li | Lemao Liu | Guoping Huang | Shuming Shi
Findings of the Association for Computational Linguistics: EMNLP 2020

Many efforts have been devoted to extracting constituency trees from pre-trained language models, often proceeding in two stages: feature definition and parsing. However, this kind of methods may suffer from the branching bias issue, which will inflate the performances on languages with the same branch it biases to. In this work, we propose quantitatively measuring the branching bias by comparing the performance gap on a language and its reversed language, which is agnostic to both language models and extracting methods. Furthermore, we analyze the impacts of three factors on the branching bias, namely feature definitions, parsing algorithms, and language models. Experiments show that several existing works exhibit branching biases, and some implementations of these three factors can introduce the branching bias.


pdf bib
Understanding Data Augmentation in Neural Machine Translation: Two Perspectives towards Generalization
Guanlin Li | Lemao Liu | Guoping Huang | Conghui Zhu | Tiejun Zhao
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)

Many Data Augmentation (DA) methods have been proposed for neural machine translation. Existing works measure the superiority of DA methods in terms of their performance on a specific test set, but we find that some DA methods do not exhibit consistent improvements across translation tasks. Based on the observation, this paper makes an initial attempt to answer a fundamental question: what benefits, which are consistent across different methods and tasks, does DA in general obtain? Inspired by recent theoretic advances in deep learning, the paper understands DA from two perspectives towards the generalization ability of a model: input sensitivity and prediction margin, which are defined independent of specific test set thereby may lead to findings with relatively low variance. Extensive experiments show that relatively consistent benefits across five DA methods and four translation tasks are achieved regarding both perspectives.


pdf bib
Learning from Parenthetical Sentences for Term Translation in Machine Translation
Guoping Huang | Jiajun Zhang | Yu Zhou | Chengqing Zong
Proceedings of the 9th SIGHAN Workshop on Chinese Language Processing

Terms extensively exist in specific domains, and term translation plays a critical role in domain-specific machine translation (MT) tasks. However, it’s a challenging task to translate them correctly for the huge number of pre-existing terms and the endless new terms. To achieve better term translation quality, it is necessary to inject external term knowledge into the underlying MT system. Fortunately, there are plenty of term translation knowledge in parenthetical sentences on the Internet. In this paper, we propose a simple, straightforward and effective framework to improve term translation by learning from parenthetical sentences. This framework includes: (1) a focused web crawler; (2) a parenthetical sentence filter, acquiring parenthetical sentences including bilingual term pairs; (3) a term translation knowledge extractor, extracting bilingual term translation candidates; (4) a probability learner, generating the term translation table for MT decoders. The extensive experiments demonstrate that our proposed framework significantly improves the translation quality of terms and sentences.