Guoyu Tang


pdf bib
Clustering tweets usingWikipedia concepts
Guoyu Tang | Yunqing Xia | Weizhi Wang | Raymond Lau | Fang Zheng
Proceedings of the Ninth International Conference on Language Resources and Evaluation (LREC'14)

Two challenging issues are notable in tweet clustering. Firstly, the sparse data problem is serious since no tweet can be longer than 140 characters. Secondly, synonymy and polysemy are rather common because users intend to present a unique meaning with a great number of manners in tweets. Enlightened by the recent research which indicates Wikipedia is promising in representing text, we exploit Wikipedia concepts in representing tweets with concept vectors. We address the polysemy issue with a Bayesian model, and the synonymy issue by exploiting the Wikipedia redirections. To further alleviate the sparse data problem, we further make use of three types of out-links in Wikipedia. Evaluation on a twitter dataset shows that the concept model outperforms the traditional VSM model in tweet clustering.


pdf bib
CLTC: A Chinese-English Cross-lingual Topic Corpus
Yunqing Xia | Guoyu Tang | Peng Jin | Xia Yang
Proceedings of the Eighth International Conference on Language Resources and Evaluation (LREC'12)

Cross-lingual topic detection within text is a feasible solution to resolving the language barrier in accessing the information. This paper presents a Chinese-English cross-lingual topic corpus (CLTC), in which 90,000 Chinese articles and 90,000 English articles are organized within 150 topics. Compared with TDT corpora, CLTC has three advantages. First, CLTC is bigger in size. This makes it possible to evaluate the large-scale cross-lingual text clustering methods. Second, articles are evenly distributed within the topics. Thus it can be used to produce test datasets for different purposes. Third, CLTC can be used as a cross-lingual comparable corpus to develop methods for cross-lingual information access. A preliminary evaluation with CLTC corpus indicates that the corpus is effective in evaluating cross-lingual topic detection methods.


pdf bib
CLGVSM: Adapting Generalized Vector Space Model to Cross-lingual Document Clustering
Guoyu Tang | Yunqing Xia | Min Zhang | Haizhou Li | Fang Zheng
Proceedings of 5th International Joint Conference on Natural Language Processing