2024
pdf
bib
abs
Boosting Textural NER with Synthetic Image and Instructive Alignment
Jiahao Wang
|
Wenjun Ke
|
Peng Wang
|
Hang Zhang
|
Dong Nie
|
Jiajun Liu
|
Guozheng Li
|
Ziyu Shang
Findings of the Association for Computational Linguistics: ACL 2024
Named entity recognition (NER) is a pivotal task reliant on textual data, often impeding the disambiguation of entities due to the absence of context. To tackle this challenge, conventional methods often incorporate images crawled from the internet as auxiliary information. However, the images often lack sufficient entities or would introduce noise. Even with high-quality images, it is still challenging to efficiently use images as auxiliaries (i.e., fine-grained alignment with texts). We introduce a novel method named InstructNER to address these issues. Leveraging the rich real-world knowledge and image synthesis capabilities of a large pre-trained stable diffusion (SD) model, InstructNER transforms the text-only NER into a multimodal NER (MNER) task. A selection process automatically identifies the best synthetic image by comparing fine-grained similarities with internet-crawled images through a visual bag-of-words strategy. Note, during the image synthesis, a cross-attention matrix between synthetic images and raw text emerges, which inspires a soft attention guidance alignment (AGA) mechanism. AGA optimizes the MNER task and concurrently facilitates instructive alignment in MNER. Empirical experiments on prominent MNER datasets show that our method surpasses all text-only baselines, improving F1-score by 1.4% to 2.3%. Remarkably, even when compared to fully multimodal baselines, our approach maintains competitive. Furthermore, we open-source a comprehensive synthetic image dataset and the code to supplement existing raw dataset. The code and datasets are available in https://github.com/Heyest/InstructNER.
pdf
bib
abs
Unlocking Instructive In-Context Learning with Tabular Prompting for Relational Triple Extraction
Guozheng Li
|
Wenjun Ke
|
Peng Wang
|
Zijie Xu
|
Ke Ji
|
Jiajun Liu
|
Ziyu Shang
|
Qiqing Luo
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)
The in-context learning (ICL) for relational triple extraction (RTE) has achieved promising performance, but still encounters two key challenges: (1) how to design effective prompts and (2) how to select proper demonstrations. Existing methods, however, fail to address these challenges appropriately. On the one hand, they usually recast RTE task to text-to-text prompting formats, which is unnatural and results in a mismatch between the output format at the pre-training time and the inference time for large language models (LLMs). On the other hand, they only utilize surface natural language features and lack consideration of triple semantics in sample selection. These issues are blocking improved performance in ICL for RTE, thus we aim to tackle prompt designing and sample selection challenges simultaneously. To this end, we devise a tabular prompting for RTE (TableIE) which frames RTE task into a table generation task to incorporate explicit structured information into ICL, facilitating conversion of outputs to RTE structures. Then we propose instructive in-context learning (I2CL) which only selects and annotates a few samples considering internal triple semantics in massive unlabeled samples. Specifically, we first adopt off-the-shelf LLMs to perform schema-agnostic pre-extraction of triples in unlabeled samples using TableIE. Then we propose a novel triple-level similarity metric considering triple semantics between these samples and train a sample retrieval model based on calculated similarities in pre-extracted unlabeled data. We also devise three different sample annotation strategies for various scenarios. Finally, the annotated samples are considered as few-shot demonstrations in ICL for RTE. Experimental results on two RTE benchmarks show that I2CL with TableIE achieves state-of-the-art performance compared to other methods under various few-shot RTE settings.
2023
pdf
bib
abs
Revisiting Large Language Models as Zero-shot Relation Extractors
Guozheng Li
|
Peng Wang
|
Wenjun Ke
Findings of the Association for Computational Linguistics: EMNLP 2023
Relation extraction (RE) consistently involves a certain degree of labeled or unlabeled data even if under zero-shot setting. Recent studies have shown that large language models (LLMs) transfer well to new tasks out-of-the-box simply given a natural language prompt, which provides the possibility of extracting relations from text without any data and parameter tuning. This work focuses on the study of exploring LLMs, such as ChatGPT, as zero-shot relation extractors. On the one hand, we analyze the drawbacks of existing RE prompts and attempt to incorporate recent prompt techniques such as chain-of-thought (CoT) to improve zero-shot RE. We propose the summarize-and-ask (SumAsk) prompting, a simple prompt recursively using LLMs to transform RE inputs to the effective question answering (QA) format. On the other hand, we conduct comprehensive experiments on various benchmarks and settings to investigate the capabilities of LLMs on zero-shot RE. Specifically, we have the following findings: (i) SumAsk consistently and significantly improves LLMs performance on different model sizes, benchmarks and settings; (ii) Zero-shot prompting with ChatGPT achieves competitive or superior results compared with zero-shot and fully supervised methods; (iii) LLMs deliver promising performance in extracting overlapping relations; (iv) The performance varies greatly regarding different relations. Different from small language models, LLMs are effective in handling challenge none-of-the-above (NoTA) relation.
2018
pdf
bib
abs
T-Know: a Knowledge Graph-based Question Answering and Infor-mation Retrieval System for Traditional Chinese Medicine
Ziqing Liu
|
Enwei Peng
|
Shixing Yan
|
Guozheng Li
|
Tianyong Hao
Proceedings of the 27th International Conference on Computational Linguistics: System Demonstrations
T-Know is a knowledge service system based on the constructed knowledge graph of Traditional Chinese Medicine (TCM). Using authorized and anonymized clinical records, medicine clinical guidelines, teaching materials, classic medical books, academic publications, etc., as data resources, the system extracts triples from free texts to build a TCM knowledge graph by our developed natural language processing methods. On the basis of the knowledge graph, a deep learning algorithm is implemented for single-round question understanding and multiple-round dialogue. In addition, the TCM knowledge graph also is used to support human-computer interactive knowledge retrieval by normalizing search keywords to medical terminology.