Gang Zhou


2025

pdf bib
Pre-trained Semantic Interaction based Inductive Graph Neural Networks for Text Classification
Shiyu Wang | Gang Zhou | Jicang Lu | Jing Chen | Ningbo Huang
Proceedings of the 31st International Conference on Computational Linguistics

Nowadays, research of Text Classification (TC) based on graph neural networks (GNNs) is on the rise. Both inductive methods and transductive methods have made significant progress. For transductive methods, the semantic interaction between texts plays a crucial role in the learning of effective text representations. However, it is difficult to perform inductive learning while modeling interactions between texts on the graph. To give a universal solution, we propose the graph neural network based on pre-trained semantic interaction called PaSIG. Firstly, we construct a text-word heterogeneity graph and design an asymmetric structure to ensure one-way message passing from words to the test texts. Meanwhile, we use the context representation capability of the pre-trained language model to construct node features that contain classification semantic information. Afterward, we explore the adaptative aggregation methods with a gated fusion mechanism. Extensive experiments on five datasets have shown the effectiveness of PaSIG, with the accuracy exceeding the baseline by 2.7% on average. While achieving state-of-the-art performance, we have also taken measures of subgraph sampling and intermediate state preservation to achieve fast inference.

pdf bib
Role-Guided Annotation and Prototype-Aligned Representation Learning for Historical Literature Sentiment Classification
Hongfei Du | Jiacheng Shi | Jacobo Myerston | Sidi Lu | Gang Zhou | Ashley Gao
Findings of the Association for Computational Linguistics: EMNLP 2025

Sentiment analysis of historical literature provides valuable insights for humanities research, yet remains challenging due to scarce annotations and limited generalization of models trained on modern texts. Prior work has primarily focused on two directions: using sentiment lexicons or leveraging large language models (LLMs) for annotation. However, lexicons are often unavailable for historical texts due to limited linguistic resources, and LLM-generated labels often reflect modern sentiment norms and fail to capture the implicit, ironic, or morally nuanced expressions typical of historical literature, resulting in noisy supervision. To address these issues, we introduce a role-guided annotation strategy that prompts LLMs to simulate historically situated perspectives when labeling sentiment. Furthermore, we design a prototype-aligned framework that learns sentiment prototypes from high-resource data and aligns them with low-resource representations via symmetric contrastive loss, improving robustness to noisy labels. Experiments across multiple historical literature datasets show that our method outperforms state-of-the-art baselines, demonstrating its effectiveness.