Gyunyeop Kim
2025
Exploration-Driven Reinforcement Learning for Expert Routing Improvement in Mixture-of-Experts Language Models
Gyunyeop Kim
|
Sangwoo Kang
Findings of the Association for Computational Linguistics: EMNLP 2025
The performance of MoE-based LLMs depends on the router’s ability to select suitable experts; however, the router is typically not explicitly supervised to acquire this routing ability. We propose Exploration-Driven Reinforcement Learning (ERL), which explicitly optimizes the router by exploration of alternative routing paths. For every input, ERL evaluates by (i) the original routing path and (ii) paths in which an 𝛼-fraction of routing decisions is randomly perturbed, and treats their performance gap as an advantage signal in a reinforcement learning. Moreover, MoE-ERLwPL mitigates the risk of performance collapse caused by routing reinforcement learning–induced expert over-specialization by intentionally enforcing overlap in experts’ knowledge. Without adding parameters or external reward models, our method improves summarization (SAMSum, XSUM), question answering (SQuAD), and language modeling (WikiText-2), and raises routing quality, delivering up to 8.9 × higher MRR than baselines over 100 perturbed routing paths. Code is available at our github.
FractalLLM: Lossless Self-Speculative Decoding with Layer Embedded Self-Compression
Juhyeong Kim
|
Sangyeon Yu
|
Gyunyeop Kim
|
Sangwoo Kang
Findings of the Association for Computational Linguistics: EMNLP 2025
Autoregressive decoding in large language models (LLMs) necessitates a full forward pass for each generated token, significantly increasing inference latency. To address this limitation, we propose Fractal-LLM, a lossless self-speculative decoding method that embeds a compressed model within selected decoder layers of the original model. Specifically, our approach generates multiple draft tokens in parallel by injecting compressed layers into selected decoder layers. These draft tokens are subsequently verified through a single forward pass of the original model, ensuring the final outputs exactly match those produced by the original model. Experimental results across diverse benchmarks—including GSM8K, XSUM, CNN/DailyMail, and HumanEval—demonstrate that our method achieves substantial inference speed-ups (up to 2.47×) compared to standard autoregressive decoding, without requiring any additional training.