Hadi Mahmoud Khalilia
2024
Advancing the Arabic WordNet: Elevating Content Quality
Abed Alhakim Freihat
|
Hadi Mahmoud Khalilia
|
Gábor Bella
|
Fausto Giunchiglia
Proceedings of the 6th Workshop on Open-Source Arabic Corpora and Processing Tools (OSACT) with Shared Tasks on Arabic LLMs Hallucination and Dialect to MSA Machine Translation @ LREC-COLING 2024
High-quality WordNets are crucial for achieving high-quality results in NLP applications that rely on such resources. However, the wordnets of most languages suffer from serious issues of correctness and completeness with respect to the words and word meanings they define, such as incorrect lemmas, missing glosses and example sentences, or an inadequate, Western-centric representation of the morphology and the semantics of the language. Previous efforts have largely focused on increasing lexical coverage while ignoring other qualitative aspects. In this paper, we focus on the Arabic language and introduce a major revision of the Arabic WordNet that addresses multiple dimensions of lexico-semantic resource quality. As a result, we updated more than 58% of the synsets of the existing Arabic WordNet by adding missing information and correcting errors. In order to address issues of language diversity and untranslatability, we also extended the wordnet structure by new elements: phrasets and lexical gaps.