Hae Won Park
2024
HEART-felt Narratives: Tracing Empathy and Narrative Style in Personal Stories with LLMs
Jocelyn J Shen
|
Joel Mire
|
Hae Won Park
|
Cynthia Breazeal
|
Maarten Sap
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing
Empathy serves as a cornerstone in enabling prosocial behaviors, and can be evoked through sharing of personal experiences in stories. While empathy is influenced by narrative content, intuitively, people respond to the way a story is told as well, through narrative style. Yet the relationship between empathy and narrative style is not fully understood. In this work, we empirically examine and quantify this relationship between style and empathy using LLMs and large-scale crowdsourcing studies. We introduce a novel, theory-based taxonomy, HEART (Human Empathy and Narrative Taxonomy) that delineates elements of narrative style that can lead to empathy with the narrator of a story. We establish the performance of LLMs in extracting narrative elements from HEART, showing that prompting with our taxonomy leads to reasonable, human-level annotations beyond what prior lexicon-based methods can do. To show empirical use of our taxonomy, we collect a dataset of empathy judgments of stories via a large-scale crowdsourcing study with N=2,624 participants. We show that narrative elements extracted via LLMs, in particular, vividness of emotions and plot volume, can elucidate the pathways by which narrative style cultivates empathy towards personal stories. Our work suggests that such models can be used for narrative analyses that lead to human-centered social and behavioral insights.
Global Reward to Local Rewards: Multimodal-Guided Decomposition for Improving Dialogue Agents
Dong Won Lee
|
Hae Won Park
|
Yoon Kim
|
Cynthia Breazeal
|
Louis-Philippe Morency
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing
We describe an approach for aligning an LLM based dialogue agent for long-term social dialogue, where there is only a single global score given by the user at the end of the session. In this paper, we propose the usage of denser naturally-occurring multimodal communicative signals as local implicit feedback to improve the turn-level utterance generation. Therefore, our approach (dubbed GELI) learns a local, turn-level reward model by decomposing the human-provided Global Explicit (GE) session level reward, using Local Implicit (LI) multimodal reward signals to crossmodally shape the reward decomposition step. This decomposed reward model is then used as part of the RLHF pipeline to improve an LLM-based dialog agent. We run quantitative and qualitative human studies on two large-scale datasets to evaluate the performance of our GELI approach, and find that it shows consistent improvements across various conversational metrics compared to baseline methods.
2021
MRF-Chat: Improving Dialogue with Markov Random Fields
Ishaan Grover
|
Matthew Huggins
|
Cynthia Breazeal
|
Hae Won Park
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing
Recent state-of-the-art approaches in open-domain dialogue include training end-to-end deep-learning models to learn various conversational features like emotional content of response, symbolic transitions of dialogue contexts in a knowledge graph and persona of the agent and the user, among others. While neural models have shown reasonable results, modelling the cognitive processes that humans use when conversing with each other may improve the agent’s quality of responses. A key element of natural conversation is to tailor one’s response such that it accounts for concepts that the speaker and listener may or may not know and the contextual relevance of all prior concepts used in conversation. We show that a rich representation and explicit modeling of these psychological processes can improve predictions made by existing neural network models. In this work, we propose a novel probabilistic approach using Markov Random Fields (MRF) to augment existing deep-learning methods for improved next utterance prediction. Using human and automatic evaluations, we show that our augmentation approach significantly improves the performance of existing state-of-the-art retrieval models for open-domain conversational agents.
Search
Co-authors
- Cynthia Breazeal 3
- Jocelyn J Shen 1
- Joel Mire 1
- Maarten Sap 1
- Dong Won Lee 1
- show all...