Hagai Taitelbaum


2022

pdf bib
TRUE: Re-evaluating Factual Consistency Evaluation
Or Honovich | Roee Aharoni | Jonathan Herzig | Hagai Taitelbaum | Doron Kukliansy | Vered Cohen | Thomas Scialom | Idan Szpektor | Avinatan Hassidim | Yossi Matias
Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

Grounded text generation systems often generate text that contains factual inconsistencies, hindering their real-world applicability. Automatic factual consistency evaluation may help alleviate this limitation by accelerating evaluation cycles, filtering inconsistent outputs and augmenting training data. While attracting increasing attention, such evaluation metrics are usually developed and evaluated in silo for a single task or dataset, slowing their adoption. Moreover, previous meta-evaluation protocols focused on system-level correlations with human annotations, which leave the example-level accuracy of such metrics unclear.In this work, we introduce TRUE: a comprehensive survey and assessment of factual consistency metrics on a standardized collection of existing texts from diverse tasks, manually annotated for factual consistency. Our standardization enables an example-level meta-evaluation protocol that is more actionable and interpretable than previously reported correlations, yielding clearer quality measures. Across diverse state-of-the-art metrics and 11 datasets we find that large-scale NLI and question generation-and-answering-based approaches achieve strong and complementary results. We recommend those methods as a starting point for model and metric developers, and hope TRUE will foster progress towards even better evaluation methods.

pdf bib
TRUE: Re-evaluating Factual Consistency Evaluation
Or Honovich | Roee Aharoni | Jonathan Herzig | Hagai Taitelbaum | Doron Kukliansy | Vered Cohen | Thomas Scialom | Idan Szpektor | Avinatan Hassidim | Yossi Matias
Proceedings of the Second DialDoc Workshop on Document-grounded Dialogue and Conversational Question Answering

Grounded text generation systems often generate text that contains factual inconsistencies, hindering their real-world applicability. Automatic factual consistency evaluation may help alleviate this limitation by accelerating evaluation cycles, filtering inconsistent outputs and augmenting training data. While attracting increasing attention, such evaluation metrics are usually developed and evaluated in silo for a single task or dataset, slowing their adoption. Moreover, previous meta-evaluation protocols focused on system-level correlations with human annotations, which leave the example-level accuracy of such metrics unclear.In this work, we introduce TRUE: a comprehensive study of factual consistency metrics on a standardized collection of existing texts from diverse tasks, manually annotated for factual consistency. Our standardization enables an example-level meta-evaluation protocol that is more actionable and interpretable than previously reported correlations, yielding clearer quality measures. Across diverse state-of-the-art metrics and 11 datasets we find that large-scale NLI and question generation-and-answering-based approaches achieve strong and complementary results. We recommend those methods as a starting point for model and metric developers, and hope TRUE will foster progress towards even better methods.

2020

pdf bib
A Locally Linear Procedure for Word Translation
Soham Dan | Hagai Taitelbaum | Jacob Goldberger
Proceedings of the 28th International Conference on Computational Linguistics

Learning a mapping between word embeddings of two languages given a dictionary is an important problem with several applications. A common mapping approach is using an orthogonal matrix. The Orthogonal Procrustes Analysis (PA) algorithm can be applied to find the optimal orthogonal matrix. This solution restricts the expressiveness of the translation model which may result in sub-optimal translations. We propose a natural extension of the PA algorithm that uses multiple orthogonal translation matrices to model the mapping and derive an algorithm to learn these multiple matrices. We achieve better performance in a bilingual word translation task and a cross-lingual word similarity task compared to the single matrix baseline. We also show how multiple matrices can model multiple senses of a word.

2019

pdf bib
Multilingual word translation using auxiliary languages
Hagai Taitelbaum | Gal Chechik | Jacob Goldberger
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)

Current multilingual word translation methods are focused on jointly learning mappings from each language to a shared space. The actual translation, however, is still performed as an isolated bilingual task. In this study we propose a multilingual translation procedure that uses all the learned mappings to translate a word from one language to another. For each source word, we first search for the most relevant auxiliary languages. We then use the translations to these languages to form an improved representation of the source word. Finally, this representation is used for the actual translation to the target language. Experiments on a standard multilingual word translation benchmark demonstrate that our model outperforms state of the art results.

pdf bib
A Multi-Pairwise Extension of Procrustes Analysis for Multilingual Word Translation
Hagai Taitelbaum | Gal Chechik | Jacob Goldberger
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)

In this paper we present a novel approach to simultaneously representing multiple languages in a common space. Procrustes Analysis (PA) is commonly used to find the optimal orthogonal word mapping in the bilingual case. The proposed Multi Pairwise Procrustes Analysis (MPPA) is a natural extension of the PA algorithm to multilingual word mapping. Unlike previous PA extensions that require a k-way dictionary, this approach requires only pairwise bilingual dictionaries that are much easier to construct.