Knowledge Base Question Answering (KBQA) aims to answer natural language questions over large-scale knowledge bases (KBs), which can be summarized into two crucial steps: knowledge retrieval and semantic parsing. However, three core challenges remain: inefficient knowledge retrieval, mistakes of retrieval adversely impacting semantic parsing, and the complexity of previous KBQA methods. To tackle these challenges, we introduce ChatKBQA, a novel and simple generate-then-retrieve KBQA framework, which proposes first generating the logical form with fine-tuned LLMs, then retrieving and replacing entities and relations with an unsupervised retrieval method, to improve both generation and retrieval more directly. Experimental results show that ChatKBQA achieves new state-of-the-art performance on standard KBQA datasets, WebQSP, and CWQ. This work can also be regarded as a new paradigm for combining LLMs with knowledge graphs (KGs) for interpretable and knowledge-required question answering.
Link Prediction on Hyper-relational Knowledge Graphs (HKG) is a worthwhile endeavor. HKG consists of hyper-relational facts (H-Facts), composed of a main triple and several auxiliary attribute-value qualifiers, which can effectively represent factually comprehensive information. The internal structure of HKG can be represented as a hypergraph-based representation globally and a semantic sequence-based representation locally. However, existing research seldom simultaneously models the graphical and sequential structure of HKGs, limiting HKGs’ representation. To overcome this limitation, we propose a novel Hierarchical Attention model for HKG Embedding (HAHE), including global-level and local-level attention. The global-level attention can model the graphical structure of HKG using hypergraph dual-attention layers, while the local-level attention can learn the sequential structure inside H-Facts via heterogeneous self-attention layers. Experiment results indicate that HAHE achieves state-of-the-art performance in link prediction tasks on HKG standard datasets. In addition, HAHE addresses the issue of HKG multi-position prediction for the first time, increasing the applicability of the HKG link prediction task. Our code is publicly available.
Temporal knowledge graph (TKG) has been proved to be an effective way for modeling dynamic facts in real world. Many efforts have been devoted into predicting future events i.e. extrapolation, on TKGs. Recently, rule-based knowledge graph completion methods which are considered to be more interpretable than embedding-based methods, have been transferred to temporal knowledge graph extrapolation. However, rule-based models suffer from temporal redundancy when leveraged under dynamic settings, which results in inaccurate rule confidence calculation. In this paper, we define the problem of temporal redundancy and propose TR-Rules which solves the temporal redundancy issues through a simple but effective strategy. Besides, to capture more information lurking in TKGs, apart from cyclic rules, TR-Rules also mines and properly leverages acyclic rules, which has not been explored by existing models. Experimental results on three benchmarks show that TR-Rules achieves state-of-the-art performance. Ablation study shows the impact of temporal redundancy and demonstrates the performance of acyclic rules is much more promising due to its higher sensitivity to the number of sampled walks during learning stage.
Static knowledge graph (SKG) embedding (SKGE) has been studied intensively in the past years. Recently, temporal knowledge graph (TKG) embedding (TKGE) has emerged. In this paper, we propose a Recursive Temporal Fact Embedding (RTFE) framework to transplant SKGE models to TKGs and to enhance the performance of existing TKGE models for TKG completion. Different from previous work which ignores the continuity of states of TKG in time evolution, we treat the sequence of graphs as a Markov chain, which transitions from the previous state to the next state. RTFE takes the SKGE to initialize the embeddings of TKG. Then it recursively tracks the state transition of TKG by passing updated parameters/features between timestamps. Specifically, at each timestamp, we approximate the state transition as the gradient update process. Since RTFE learns each timestamp recursively, it can naturally transit to future timestamps. Experiments on five TKG datasets show the effectiveness of RTFE.
A spoken language understanding (SLU) system includes two main tasks, slot filling (SF) and intent detection (ID). The joint model for the two tasks is becoming a tendency in SLU. But the bi-directional interrelated connections between the intent and slots are not established in the existing joint models. In this paper, we propose a novel bi-directional interrelated model for joint intent detection and slot filling. We introduce an SF-ID network to establish direct connections for the two tasks to help them promote each other mutually. Besides, we design an entirely new iteration mechanism inside the SF-ID network to enhance the bi-directional interrelated connections. The experimental results show that the relative improvement in the sentence-level semantic frame accuracy of our model is 3.79% and 5.42% on ATIS and Snips datasets, respectively, compared to the state-of-the-art model.